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 LDA is a generative topic model

The Good: 
Priors explicitly encode your beliefs about what topics can be, 
and easily allow for iterative development of new topic models
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 Domain Knowledge via Dirichlet Forest Priors

“Incorporating Domain Knowledge into Topic Modeling via Dirichlet Forest Priors.” Andrzejewski et al. ICML (2009)
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http://www.david-andrzejewski.com/publications/icml-2009.pdf
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 Domain Knowledge via First-Order Logic

“A Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation Using First-Order Logic.” 
Andrzejewski et al. IJCAI (2011).
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http://www.david-andrzejewski.com/publications/ijcai-2011.pdf
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 SeededLDA

“Incorporating Lexical Priors into Topic Models.” Jagarlamudi et al. EACL (2012)
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https://dl.acm.org/citation.cfm?id=2380844
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 Hierarchical LDA

“Hierarchical Topic Models and the Nested Chinese Restaurant Process.” Griffiths et al. Neural Information Processing 
Systems (2003).
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https://papers.nips.cc/paper/2466-hierarchical-topic-models-and-the-nested-chinese-restaurant-process
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 A Generative Modeling Tradeoff

The Bad:  
Each additional prior takes a very specific view of the problem at hand, 
which both limits what a topic can be and makes it harder to justify in 

applications and to domain experts

The Good: 
Priors explicitly encode your beliefs about what topics can be, 
and easily allow for iterative development of new topic models
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We propose a topic model that 
learns topics through 

information-theoretic criteria, 
rather than a generative model, 
within a framework that yields 

hierarchical and semi-
supervised extensions with no 

additional assumptions

We propose a topic model that 
learns topics through 

information-theoretic criteria, 
rather than a generative model, 
within a framework that yields 

hierarchical and semi-
supervised extensions with no 

additional assumptions

 Proposed Work

…

…
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 A Different Perspective on “Topics”

LDA: a topic is a distribution over words

Consider three documents:
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 CorEx Objective (example)

1/2 0

0 1/2

Documents Probability table
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 CorEx Objective (example)

Documents

Words 1 and 2 are related:

Probability table

1/2 0

0 1/2
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 CorEx Objective (example)

Documents

Words 1 and 2 are related:

Hypothesize a latent factor: 

Probability table

1/2 0

0 1/2
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Then conditioned on     , words 1 and 2 are independent 

 CorEx Objective (example)
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 CorEx Objective (example)

Documents

Words 1 and 2 are related:

Goal: find latent factors that make words conditionally independent

Then conditioned on     , words 1 and 2 are independent 

Probability table

1/2 0

0 1/2

Hypothesize a latent factor: 
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 CorEx Objective

Goal: find latent factors that make words conditionally independent
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 CorEx Objective

Total correlation conditioned on Y

Goal: find latent factors that make words conditionally independent
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 CorEx Objective

if and only if the topic “explains” all the dependencies (total correlation)

Hence, “Total Correlation Explanation” (CorEx)

Goal: find latent factors that make words conditionally independent
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In order to maximize the information                between a group of words       in  
topic    we consider a tractable lower bound:

 CorEx Objective

Goal: find latent factors that make words conditionally independent
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In order to maximize the information                between a group of words       in  
topic    we consider a tractable lower bound:

 CorEx Objective

Goal: find latent factors that make words conditionally independent

We maximize this lower bound over       topics
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 CorEx Objective

We can now rewrite the objective:
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We transform this from a combinatorial to a continuous optimization by introducing 
variables                   and “relaxing” words into informative topics

 CorEx Objective

We can now rewrite the objective:
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 CorEx Objective

This relaxation yields a set of update equations which we can iterate through until 
convergence

We transform this from a combinatorial to a continuous optimization by introducing 
variables                   and “relaxing” words into informative topics

We can now rewrite the objective:
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Under the hood:  
1. We introduce a sparsity optimization for the update equations, 

 
by assuming words are represented by binary random variables 
 


2. The current relaxation scheme places each word in one topic, resulting in a partition of the 
vocabulary, rather than mixed membership topics

 CorEx Objective

We transform this from a combinatorial to a continuous optimization by introducing 
variables                   and “relaxing” words into informative topics

We can now rewrite the objective:
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Under the hood:  
1. We introduce a sparsity optimization for the update equations, 

 
by assuming words are represented by binary random variables 
 


2. The current relaxation scheme places each word in one topic, resulting in a partition of the 
vocabulary, rather than mixed membership topics

 CorEx Objective

We transform this from a combinatorial to a continuous optimization by introducing 
variables                   and “relaxing” words into informative topics

We can now rewrite the objective:

These are issues of speed, not theory
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about Hillary Clinton’s presidential campaign, up to August 2016
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about Hillary Clinton’s presidential campaign, up to August 2016

Clinton Article Topics
1: server, department, classified, information, private, investigation, fbi, email, emails, secretary

3: sanders, bernie, primary, vermont, win, voters, race, nomination, vote, polls

9: federal, its, officials, law, including, committee, staff, statement, director, group

8: percent, poll, points, percentage, margin, survey, according, 10, polling, university

13: islamic, foreign, military, terrorism, war, syria, iraq, isis, u, terrorist

14: trump, donald, trump’s, republican, nominee, party, convention, top, election, him

6: crowd, woman, speech, night, women, stage, man, mother, audience, life
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about Hillary Clinton’s presidential campaign, up to August 2016

Clinton Article Topics
1: server, department, classified, information, private, investigation, fbi, email, emails, secretary

3: sanders, bernie, primary, vermont, win, voters, race, nomination, vote, polls

9: federal, its, officials, law, including, committee, staff, statement, director, group

8: percent, poll, points, percentage, margin, survey, according, 10, polling, university

13: islamic, foreign, military, terrorism, war, syria, iraq, isis, u, terrorist

14: trump, donald, trump’s, republican, nominee, party, convention, top, election, him

6: crowd, woman, speech, night, women, stage, man, mother, audience, life

Words ranked by mutual information with topic
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about Hillary Clinton’s presidential campaign, up to August 2016

Clinton Article Topics
1: server, department, classified, information, private, investigation, fbi, email, emails, secretary

3: sanders, bernie, primary, vermont, win, voters, race, nomination, vote, polls

9: federal, its, officials, law, including, committee, staff, statement, director, group

8: percent, poll, points, percentage, margin, survey, according, 10, polling, university

13: islamic, foreign, military, terrorism, war, syria, iraq, isis, u, terrorist

14: trump, donald, trump’s, republican, nominee, party, convention, top, election, him

6: crowd, woman, speech, night, women, stage, man, mother, audience, life

1:

3:

6:

8:

9:

13:

14:

Topics ranked 
by total 

correlation
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about Hillary Clinton’s presidential campaign, up to August 2016

Clinton Article Topics
1: server, department, classified, information, private, investigation, fbi, email, emails, secretary

3: sanders, bernie, primary, vermont, win, voters, race, nomination, vote, polls

9: federal, its, officials, law, including, committee, staff, statement, director, group

8: percent, poll, points, percentage, margin, survey, according, 10, polling, university

13: islamic, foreign, military, terrorism, war, syria, iraq, isis, u, terrorist

14: trump, donald, trump’s, republican, nominee, party, convention, top, election, him

6: crowd, woman, speech, night, women, stage, man, mother, audience, life

Most informative topic
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about Hillary Clinton’s presidential campaign, up to August 2016

Clinton Article Topics
1: server, department, classified, information, private, investigation, fbi, email, emails, secretary

3: sanders, bernie, primary, vermont, win, voters, race, nomination, vote, polls

9: federal, its, officials, law, including, committee, staff, statement, director, group

8: percent, poll, points, percentage, margin, survey, according, 10, polling, university

13: islamic, foreign, military, terrorism, war, syria, iraq, isis, u, terrorist

14: trump, donald, trump’s, republican, nominee, party, convention, top, election, him

6: crowd, woman, speech, night, women, stage, man, mother, audience, life
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 CorEx Topic Examples

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about Hillary Clinton’s presidential campaign, up to August 2016

Clinton Article Topics
1: server, department, classified, information, private, investigation, fbi, email, emails, secretary

3: sanders, bernie, primary, vermont, win, voters, race, nomination, vote, polls

9: federal, its, officials, law, including, committee, staff, statement, director, group

8: percent, poll, points, percentage, margin, survey, according, 10, polling, university

13: islamic, foreign, military, terrorism, war, syria, iraq, isis, u, terrorist

14: trump, donald, trump’s, republican, nominee, party, convention, top, election, him

6: crowd, woman, speech, night, women, stage, man, mother, audience, life
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 CorEx Performs Favorably Against LDA
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 CorEx Performs Favorably Against LDA
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 CorEx Extensions

With no additional assumptions, the CorEx topic model yields two extensions:

1. A hierarchical topic model

2. A semi-supervised topic model at the word level

42



NAACL 2018, New Orleans, LA @ryanjgallag

 Hierarchical CorEx

CorEx

Text

(Binarized 

documents)

…
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 Hierarchical CorEx

CorEx

Binary 
latent 
topics

Text

(Binarized 

documents)

…

…
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 Hierarchical CorEx

Input: binary topic 
representations 

over docs

…

…

CorEx

Binary 
latent 
topics

Text

(Binarized 

documents)
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 Hierarchical CorEx
Data: ~20,000 humanitarian assistance and disaster relief news articles
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 Anchored CorEx and the Information Bottleneck

Objective:
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 Anchored CorEx and the Information Bottleneck

Objective:

Maintain information about individual words
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 Anchored CorEx and the Information Bottleneck

Objective:

Compress documents into topicsMaintain information about individual words
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 Anchored CorEx and the Information Bottleneck

Objective:

Compress documents into topicsMaintain information about individual words

“The Information Bottleneck Method.” Tishby et al. (2000).

{Information bottleneck
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https://arxiv.org/abs/physics/0004057
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 Anchored CorEx and the Information Bottleneck

Objective:

Compress documents into topicsMaintain information about individual words

“The Information Bottleneck Method.” Tishby et al. (2000).

A user can anchor words to the latent topics by modifying the weight of the 
relationship between a word and a topic

{Information bottleneck
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https://arxiv.org/abs/physics/0004057
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 Anchoring Strategies

Topic Representation

avalanche snow freezinglavavolcano
Anchoring to unveil topics that do 

not naturally emerge 
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 Anchoring Strategies

Topic Representation

Topic Separability

avalanche snow freezinglavavolcano
Anchoring to unveil topics that do 

not naturally emerge 

Anchoring to help enforce 
separation between topics

social media platformsciencecomputational
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 Anchoring Strategies

Topic Representation

Topic Separability

Topic Aspects

avalanche snow freezinglavavolcano
Anchoring to unveil topics that do 

not naturally emerge 

Anchoring to help enforce 
separation between topics

Anchoring to disambiguate 
different frames around a word

social media platformsciencecomputational

election
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 Anchoring for Topic Representation

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about the campaigns of Clinton and Trump, up to August 2016
Method: train one CorEx topic model for each corpus, anchor words for comparison

white whitesimmigrants immigration muslims islam
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 Anchoring for Topic Representation

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about the campaigns of Clinton and Trump, up to August 2016

white whitesimmigrants immigration muslims islam

Method: train one CorEx topic model for each corpus, anchor words for comparison

Clinton Topic Trump Topic

1: immigration, immigrants, jobs, economic, trade, 
health, tax, wall, care, economy

1: immigration, immigrants, illegal, border, mexican, 
undocumented, rapists, mexico, wall, illegally
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 Anchoring for Topic Representation

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about the campaigns of Clinton and Trump, up to August 2016
Method: train one CorEx topic model for each corpus, anchor words for comparison

white whitesimmigrants immigration muslims islam

Clinton Topic Trump Topic

2: muslims, islam, islamic, gun, terrorism, war, military, 
iraq, terrorist, syria

2: muslims, islam, united, ban, entering, islamic, muslim, 
terrorism, terrorist, terrorists
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 Anchoring for Topic Representation

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Data: news articles about the campaigns of Clinton and Trump, up to August 2016
Method: train one CorEx topic model for each corpus, anchor words for comparison

white whitesimmigrants immigration muslims islam

Clinton Topic Trump Topic

3: white, i, you, what, do, if, we, it’s, like, people
3: white, house, whites, supremacists, supremacist, duke, 
klan, klux, ku, supremacy
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 Anchoring for Topic Aspects
Data: ~1 million English newswire articles since June 2015 from countries in the Middle East

aleppo

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute
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 Anchoring for Topic Aspects
Data: ~1 million English newswire articles since June 2015 from countries in the Middle East

aleppo

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute

Note: this data broadly covers the Middle East and a priori we do not 
expect 10 topics to emerge about Aleppo
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 Anchoring for Topic Aspects

aleppo

1: aleppo, killed, police, security, attack, state, arrested, authorities

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute

2: aleppo, forces, syria, military, war, army, civilians, iraq, militants

3: aleppo, health, medical, food, care, water, small, conditions, treatment, patients

4: country, aleppo, east, across, group, region, middle

5: two, aleppo, took, another, place, taking, leaders

6: aleppo, russia, iran, barack, obama, moscow, washington, putin

7: aleppo, political, court, part, accused, opposition, called, saying, parliament, democratic

8: government, aleppo, minister, foreign, states, united, prime, UN, law, nations

9: aleppo, city, area, near, air, northern, least, town, eastern, injured

10: aleppo, people, children, human, rights, women, social, school, society, lives

Data: ~1 million English newswire articles since June 2015 from countries in the Middle East
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 Anchoring for Topic Aspects

aleppo

1: aleppo, killed, police, security, attack, state, arrested, authorities

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute

2: aleppo, forces, syria, military, war, army, civilians, iraq, militants

3: aleppo, health, medical, food, care, water, small, conditions, treatment, patients

4: country, aleppo, east, across, group, region, middle

5: two, aleppo, took, another, place, taking, leaders

6: aleppo, russia, iran, barack, obama, moscow, washington, putin

7: aleppo, political, court, part, accused, opposition, called, saying, parliament, democratic

8: government, aleppo, minister, foreign, states, united, prime, UN, law, nations

9: aleppo, city, area, near, air, northern, least, town, eastern, injured

10: aleppo, people, children, human, rights, women, social, school, society, lives

Data: ~1 million English newswire articles since June 2015 from countries in the Middle East
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 Anchoring for Topic Aspects

aleppo

1: aleppo, killed, police, security, attack, state, arrested, authorities

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute

2: aleppo, forces, syria, military, war, army, civilians, iraq, militants

3: aleppo, health, medical, food, care, water, small, conditions, treatment, patients

4: country, aleppo, east, across, group, region, middle

5: two, aleppo, took, another, place, taking, leaders

6: aleppo, russia, iran, barack, obama, moscow, washington, putin

7: aleppo, political, court, part, accused, opposition, called, saying, parliament, democratic

8: government, aleppo, minister, foreign, states, united, prime, UN, law, nations

9: aleppo, city, area, near, air, northern, least, town, eastern, injured

10: aleppo, people, children, human, rights, women, social, school, society, lives

Data: ~1 million English newswire articles since June 2015 from countries in the Middle East
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 Anchoring for Topic Aspects

aleppo

1: aleppo, killed, police, security, attack, state, arrested, authorities

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute

2: aleppo, forces, syria, military, war, army, civilians, iraq, militants

3: aleppo, health, medical, food, care, water, small, conditions, treatment, patients

4: country, aleppo, east, across, group, region, middle

5: two, aleppo, took, another, place, taking, leaders

6: aleppo, russia, iran, barack, obama, moscow, washington, putin

7: aleppo, political, court, part, accused, opposition, called, saying, parliament, democratic

8: government, aleppo, minister, foreign, states, united, prime, UN, law, nations

9: aleppo, city, area, near, air, northern, least, town, eastern, injured

10: aleppo, people, children, human, rights, women, social, school, society, lives

Data: ~1 million English newswire articles since June 2015 from countries in the Middle East
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 Anchoring for Topic Aspects

aleppo

1: aleppo, killed, police, security, attack, state, arrested, authorities

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute

2: aleppo, forces, syria, military, war, army, civilians, iraq, militants

3: aleppo, health, medical, food, care, water, small, conditions, treatment, patients

4: country, aleppo, east, across, group, region, middle

5: two, aleppo, took, another, place, taking, leaders

6: aleppo, russia, iran, barack, obama, moscow, washington, putin

7: aleppo, political, court, part, accused, opposition, called, saying, parliament, democratic

8: government, aleppo, minister, foreign, states, united, prime, UN, law, nations

9: aleppo, city, area, near, air, northern, least, town, eastern, injured

10: aleppo, people, children, human, rights, women, social, school, society, lives

Data: ~1 million English newswire articles since June 2015 from countries in the Middle East
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 Anchoring for Topic Aspects

aleppo

1: aleppo, killed, police, security, attack, state, arrested, authorities

Work by Brendan Kennedy and Greg Ver Steeg, Information Sciences Institute

2: aleppo, forces, syria, military, war, army, civilians, iraq, militants

3: aleppo, health, medical, food, care, water, small, conditions, treatment, patients

4: country, aleppo, east, across, group, region, middle

5: two, aleppo, took, another, place, taking, leaders

6: aleppo, russia, iran, barack, obama, moscow, washington, putin

7: aleppo, political, court, part, accused, opposition, called, saying, parliament, democratic

8: government, aleppo, minister, foreign, states, united, prime, UN, law, nations

9: aleppo, city, area, near, air, northern, least, town, eastern, injured

10: aleppo, people, children, human, rights, women, social, school, society, lives

Data: ~1 million English newswire articles since June 2015 from countries in the Middle East
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 Shape of the CorEx Topic Model to Come
CorEx Topic Model

By defining topics in terms of information content, the CorEx topic model takes a 
new perspective on topic modeling

Anchoring through the information bottleneck provides a flexible mechanism to 
retrieve topics of interest and inject expert domain knowledge

Code: github.com/gregversteeg/corex_topic

CorEx is competitive with unsupervised and semi-supervised variants of LDA while 
making far fewer assumptions

Future Work

Incorporate count data into the CorEx topic model while preserving the benefits of 
the sparsity optimization

Extend CorEx to efficiently learn multi-membership topics (in progress)

67



NAACL 2018, New Orleans, LA @ryanjgallag
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CorEx Topic Model

By defining topics in terms of information content, the CorEx topic model takes a 
new perspective on topic modeling

CorEx is competitive with unsupervised and semi-supervised variants of LDA while 
making far fewer assumptions

Anchoring through the information bottleneck provides a flexible mechanism to 
retrieve topics of interest and inject expert domain knowledge

Code: github.com/gregversteeg/corex_topic

Future Work

Incorporate count data into the CorEx topic model while preserving the benefits of 
the sparsity optimization

Extend CorEx to efficiently learn multi-membership topics (in progress)
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 Shape of the CorEx Topic Model to Come
CorEx Topic Model

By defining topics in terms of information content, the CorEx topic model takes a 
new perspective on topic modeling

Anchoring through the information bottleneck provides a flexible mechanism to 
retrieve topics of interest and inject expert domain knowledge

Code: github.com/gregversteeg/corex_topic

CorEx is competitive with unsupervised and semi-supervised variants of LDA while 
making far fewer assumptions

Future Work
Extend CorEx to efficiently learn multi-membership topics (in progress)

Incorporate count data into the CorEx topic model while preserving the benefits of 
the sparsity optimization
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 Shape of the CorEx Topic Model to Come
CorEx Topic Model

Code: github.com/gregversteeg/corex_topic

By defining topics in terms of information content, the CorEx topic model takes a 
new perspective on topic modeling

Anchoring through the information bottleneck provides a flexible mechanism to 
retrieve topics of interest and inject expert domain knowledge

Future Work
Extend CorEx to efficiently learn multi-membership topics (in progress)

Incorporate count data into the CorEx topic model while preserving the benefits of 
the sparsity optimization

CorEx is competitive with unsupervised and semi-supervised variants of LDA while 
making far fewer assumptions
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 Shape of the CorEx Topic Model to Come
CorEx Topic Model

Code: github.com/gregversteeg/corex_topic

By defining topics in terms of information content, the CorEx topic model takes a 
new perspective on topic modeling

Anchoring through the information bottleneck provides a flexible mechanism to 
retrieve topics of interest and inject expert domain knowledge

Future Work
Extend CorEx to efficiently learn multi-membership topics (in progress)

Incorporate count data into the CorEx topic model while preserving the benefits of 
the sparsity optimization

CorEx is competitive with unsupervised and semi-supervised variants of LDA while 
making far fewer assumptions
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 Collaborators
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Information Sciences Institute
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Information Sciences Institute

Kyle Reing

CS PhD Student


Information Sciences Institute

The anchored Clinton and Trump election article topics come from work by Abigail Ross and the 
Computational Story Lab at the University of Vermont’s Complex Systems Center
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Marginals in terms of the optimization 
parameter

 CorEx Implementation
Update Equations

Sparsity Optimization

Probabilistic labels for each 
latent factor given sample

Substituting above turns the sum into a matrix multiplication between a matrix of 
size (# docs) x (# types) and a matrix of size (# types) x (# topics)
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 Sparsity Optimization Speed Comparison
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 CorEx Example Topics

Work by Abigail Ross and the Computational Story Lab, University of Vermont

Clinton Article Topics Trump Article Topics

1: server, department, classified, information, private, 
investigation, fib, email, emails, secretary

1: primary, party, win, cruz, delegates, voters, ted, 
nomination, republicans, vote

3: sanders, bernie, primary, vermont, win, voters, race, 
nomination, vote, polls

4: $, tax, money, million, jobs, economic, companies, 
billion, pay, taxes

9: federal, its, officials, law, including, committee, staff, 
statement, director, group

7: percent, poll, percentage, points, polls, survey, 10, 
polling, margin, according

8: percent, poll, points, percentage, margin, survey, 
according, 10, polling, university

13: islamic, foreign, military, terrorism, war, syria, iraq, isis, 
u, terrorist

14: trump, donald, trump’s, republican, nominee, party, 
convention, top, election, him

12: crowd, rally, night, event, speech, stage, audience, 
spoke, wife, took

14: rubio, marco, jeb, bush, carson, florida, ben, 
candidates, iowa, gov

25: clinton, hillary, bernie, sanders, democratic, clinton’s, 
her, she, vermont, secretary

Data: news articles about Clinton and Trump, train one CorEx topic model for each corpus
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 Comparisons to Semi-Supervised LDA
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 Anchoring Experiment
Data: HA/DR news articles and clinical health notes

For each document label:

Determine anchor words by measuring the words 
with the highest mutual information with the label

Anchor one topic of CorEx 
topic model with the label 

anchor words

Run an unsupervised CorEx 
topic model with the same 

random seed

Compute the difference in 
the metric as a matched pair

Analyze the distribution of 
the metric across models

Repeat 

30 times
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 Anchoring Experiment: Effect of Parameter
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 Anchoring Experiment: Heterogeneity of Effects
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 Anchoring for Topic Aspects
Data: ~870,000 unique tweets containing #Ferguson from Aug. 9th-Nov. 30th, 2014

protest

protests

riot

riots

“protest” Topics “riot” Topics

1: protest, protests, peaceful, violent, continue, night, 
island, photos, staten, nights

6: riot, riots, unheard, language, inciting, accidentally, 
jokingly, watts, waving, dies

2: protest, protests, #hiphopmoves, #cole, hiphop, 
nationwide, moves, fo, anheuser, boeing

7: riot, black, riots, white, #tcot, blacks, men, whites, race, 
#pjnet

4: protest, protests, paddy, covering, beverly, walmart, 
wagon, hills, passionately, including

8: riot, riots, looks, like, sounds, acting, act, animals, 
looked, treated

3: protest, protests, st, louis, guard, national, county, 
patrol, highway, city

5: protest, protests, solidarity, march, square, rally, 
#oakland, downtown, nyc, #nyc

9: riot, riots, store, looting, businesses, burning, fire, 
looted, stores, business

10: gas, riot, tear, riots, gear, rubber, bullets, military, 
molotov, armored


