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What Is core-periphery structure?



Core-Periphery Structure

Two-Block Model

“Core nodes are adjacent to other core nodes, core nodes are adjacent
to some periphery nodes, and periphery nodes do not connect with
other periphery nodes.”

- Borgatti, S.P. & Everett, M.G., 2000
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Core-Periphery Structure

Two-Block Model k-Cores Decomposition
“Core nodes are adjacent to other core nodes, core nodes are adjacent The k-core of a network is the maximal subnetwork such that every
to some periphery nodes, and periphery nodes do not connect with node has at least k connections.
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Core-Periphery Structure

Two-Block Model k-Cores Decomposition
“Core nodes are adjacent to other core nodes, core nodes are adjacent The k-core of a network is the maximal subnetwork such that every
to some periphery nodes, and periphery nodes do not connect with node has at least k connections.

other periphery nodes.”
- Borgatti, S.P. & Everett, M.G., 2000

Hub and spokes Layers
Radial Hierarchy
Star-like Shells
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Core-Periphery Partition Comparison

Two-block model
and k-cores
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Jérome Kunegis. “"KONECT—The Koblenz Network Collection.”
In Proceedings Int. Conf. on World Wide Web Companion, 2013.
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Core-Periphery Partition Comparison

8 —
@
—~ - o
i T O
M 6-
S5 7
c O _a_ o
e
@ 4- 87 =8 b i © i\
- : 4 £
. | O

c 3- | =0 =§= -8 o ©
= s T gl &g &
. p == | | 8
g ¢ : 7

1- g

. | . 1

. v/ ) /
O‘@ Y /&,o \%/? Q(é (Ql'/ % % OO/)) 47’6‘0 %e‘ Q’/)) %C‘/ K /)’%
S %o <. 2 % 0N % ® 2, 7 % 0, S 2 D
74 R 7 A % 7/ T Cx. ¢ A o,. O L OZ/
% f ° % %, © & S
Ox. 9 <
(}o % % e

Network Domain

Jérome Kunegis. “"KONECT—The Koblenz Network Collection.”
In Proceedings Int. Conf. on World Wide Web Companion, 2013.

Northeast Regional Conference on Complex Systems 2.5 YW @ryanjgallag



Core-Periphery Typology

The two-block model and the k-cores decomposition exemplify a typology of core-periphery structure

Hub-and-spoke Layered
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How do we determine which type of core-periphery
structure best describes a network?



Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Adjacency matrix
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery

“Blocks”

Periphery

Adjacency matrix
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery

Core

Periphery

Block matrix
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery

PO,p | A)

Core

Periphery

Block matrix
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery
A
Network g
data &

Periphery
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery
PO,p | A)
Posterior g
distribution O

Periphery
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery

PO,p | A) x P(A | 0,p)P(O) P(p)

Core

Periphery

Block matrix
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery
P(A | 0,p) P(0)
Covered by g
prior work O
==
D
i -
=
g

Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and
community structure in networks. Physical Review E, 83(1), 016107.

Peixoto, T. P.(2019). Bayesian stochastic blockmodeling.
Advances in Network Clustering and Blockmodeling, 289-332.

Block matrix
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Core-Periphery Stochastic Block Models

We can encode our prior notions of core-periphery structure through Bayesian stochastic block models

Core Periphery
P(p)
Prior on g
block matrix O

Periphery

Block matrix
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Block Connectivity Priors

P(p)

Hub-and-spoke
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Block Connectivity Priors

P(p)

Hub-and-spoke

P11 > P12 > P»
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Block Connectivity Priors

P(p)

Hub-and-spoke Layered

P11 > P12 > P» P1>Dy> ... > Dy
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Model Selection and Description Length

The Bayesian framework allows us to perform model selection between the hub-and-spoke model #Z
and the layered model &
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Model Selection and Description Length

The Bayesian framework allows us to perform model selection between the hub-and-spoke model #Z
and the layered model &

If the hub-and-spoke model is a better fit...

Posterior odds ratio

P(6.,,% | A
Az—(A% l )>1
PO Z | A)
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Model Selection and Description Length

The Bayesian framework allows us to perform model selection between the hub-and-spoke model #Z
and the layered model &

If the hub-and-spoke model is a better fit...

Difference in

Posterior odds ratio 7
description lengths
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Model Selection and Description Length

The Bayesian framework allows us to perform model selection between the hub-and-spoke model #Z
and the layered model &

If the hub-and-spoke model is a better fit...

Difference in

Posterior odds ratio 7
description lengths

P(0g, % | A)
A=—2"" "7 5] & -logAh=24;-32,<0
P(Hg, g | A) The smaller the description length,
the better the model fit
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Synthetic Validation: Discerning Models

Hub-and-spoke Difference in MDL per Edge Layered has
has better :
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We generate synthetic core-periphery networks
according to the stochastic block model, and validate
that our models can discern the planted structure

Core-periphery interpolation
e 5 = 0, hub-and-spoke structure
« 5 = 1, layered structure (3 layers)
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Synthetic Validation: Discerning Models
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Synthetic Validation: Discerning the Number of Layers

Better fit Avgerage MDL per Edge Worse fit
Min Row MDL Max Row MDL

6- We generate synthetic networks with layered core-
periphery structure and validate that our layered
model can discern the planted number of layers

Number
of Actual 4-
Layers

2 4 6 8
Number of Modeled Layers
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Synthetic Validation: Discerning the Number of Layers

Better fit Avgerage MDL per Edge Worse fit
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Diversity of Core-Periphery Structure
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Partition Dissimilarity is Explained by the Core-Periphery Typology
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A Clarified Typology of Core-Periphery Structure

1. The two most popular core-periphery algorithms, the two-block model and the k-cores
decomposition, give inconsistent descriptions of core-periphery structure
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2. We have proposed a clarified typology of core-periphery structure:
There are hub-and-spoke and layered core-periphery structures
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3. We have constructed two stochastic block models for measuring hub-and-spoke and
layered structures, and a measure of model fit for network data
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A Clarified Typology of Core-Periphery Structure
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