Word Shift: A General Method for Visualizing and
Explaining Pairwise Comparisons Between Texts

Ryan J. Gallagher
Yy @ryanjgallag

N Northeastern University .

0" "o Network Science Institute

= CoMM Lab




Talk Qutline

1. Review common text comparison measures, including dictionary measures
2. Show how differences between texts can be visualized at the word level

3. Review the basic form of the word shift graphs

4. Introduce generalized word shift graphs for weighted averages

b. Discuss a case study about Twitter and 280 character tweets
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How do we compare two texts?



Measures for Comparing Texts: Proportions

One of the simplest ways of comparing two texts is by comparing how often a word appears in each of them
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Measures for Comparing Texts: Proportions

One of the simplest ways of comparing two texts is by comparing how often a word appears in each of them

If £ I1saword in our vocabulary, then we compare its relative frequency in each text

2 1
5pT: 1(')_p1(')
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Measures for Comparing Texts: Proportions

One of the simplest ways of comparing two texts is by comparing how often a word appears in each of them

If £ I1saword in our vocabulary, then we compare its relative frequency in each text

2 1
5pT: 1(')_p1(')

We can rank words by this difference!

P> —p; > 0 word is more common in second text

P> —p; <0 wordis more common in first text
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Proportion Shift

Case study: presidential speeches by
Lyndon B. Johnson and George W. Bush



Proportion Shift

Case study: presidential speeches by
Lyndon B. Johnson and George W. Bush

(G.W.B.)

5pT = p! (L.B.J.)



Proportion Shift

Case study: presidential speeches by
Lyndon B. Johnson and George W. Bush
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Proportion Shift

Case study: presidential speeches by
Lyndon B. Johnson and George W. Bush

(L.B.J.)
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import shifterator as sh
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Measures for Comparing Texts: Shannon Entropy

Entropy attempts to account for both how frequent and how “surprising” each word is

1
H(P) = pr log p_
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Measures for Comparing Texts: Shannon Entropy

Entropy attempts to account for both how frequent and how “surprising” each word is

1
H(P) = pr log p_

surprisal
of word T
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Measures for Comparing Texts: Shannon Entropy

Entropy attempts to account for both how frequent and how “surprising” each word is

Pz

average
surprisal

1
H(P) = pr log —

Computational Story Lab, Summer 2020 9.3 Y @ryanjgallag



Measures for Comparing Texts: Shannon Entropy

Entropy attempts to account for both how frequent and how “surprising” each word is

1
H(P) = pr log p_

We can compare two texts by comparing contributions to the entropy of each text

1 1
(1)
— p, ’log
pi pV

5H = H(P®) — H(PM) = ) pPlog
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Shannon Entropy Shift

Note: We're calculating H(G.W.B) - H(L.B.J)

Important for interpreting word direction

L.B.J.: Dgyy = 9.26
G.W.B.: q)avg = 9.52
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Shannon Entropy Shift

Note: We're calculating H(G.W.B) - H(L.B.J)

Important for interpreting word direction

Counteract H(GWB) > H(LBJ)
e

Entropy difference would be even greater otherwise
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G.W.B.: (I)avg = 9.52
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Shannon Entropy Shift

Note: We're calculating H(G.W.B) - H(L.B.J)

Important for interpreting word direction
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e
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Measures for Comparing Texts: Tsallis Entropy

We can generalize entropy to emphasize either common or uncommon words

|
H,(P) = l_a(Zp;‘—l)

a < 1 emphasizes rare words

a = 1 balances between rare and frequent words, equivalent to Shannon entropy

a > 1 emphasizes common words
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Measures for Comparing Texts: Tsallis Entropy

We can generalize entropy to emphasize either common or uncommon words

|
H,(P) = l_a(Zp;‘—l)

Like the Shannon entropy, we can difference between the Tsallis entropies of two texts

(pz(-z))(l—l (pz(-l))a—l
_ ) _ D) = _ @ (1)
6H, = H,(P*) — H,(P") = — p! | TP o
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Measures for Comparing Texts: Kullback-Leibler Divergence

Sometimes we want to compare one text to a reference text
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Measures for Comparing Texts: Kullback-Leibler Divergence

Sometimes we want to compare one text to a reference text

Say P is the reference, and P® is the comparison. The Kullback-Leibler divergence (KLD) is

1
(KL) ( p(2) (1) (2) _ n(2)
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Measures for Comparing Texts: Kullback-Leibler Divergence

Sometimes we want to compare one text to a reference text

Say P is the reference, and P® is the comparison. The Kullback-Leibler divergence (KLD) is

1
KL (p@|| p0) ) _©
DEL(p@||p Z P! log R pr log—

Pz
surprisal surprisal
of pt” of pi*
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Measures for Comparing Texts: Kullback-Leibler Divergence

Sometimes we want to compare one text to a reference text

Say P is the reference, and P® is the comparison. The Kullback-Leibler divergence (KLD) is

1
(KL) ( p(2) (1) (2) _ (@)

weighted by p”
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Measures for Comparing Texts: Kullback-Leibler Divergence

Sometimes we want to compare one text to a reference text

Say P is the reference, and P® is the comparison. The Kullback-Leibler divergence (KLD) is

1 1
(KL) ( p(2) (D) — (2) _ n(2)

Drawback: only well-defined if all the words in the reference text are also in the comparison text
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Measures for Comparing Texts: Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD
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Measures for Comparing Texts: Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD

We first define a mixture text M

M = n, PV + 7P
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Measures for Comparing Texts: Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD

We first define a mixture text M
M = n, PV + 7P
Then, the JSD is the average KLD of each text from the mixture text

D(JS)(p(l)‘ ‘p(Z)) — ﬂlD(KL)(p(l)‘ \M) 4 ﬂzD(KL)(p@)‘ \M)
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Measures for Comparing Texts: Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD

We first define a mixture text M
M = n, PV + 7P

Then, the JSD is the average KLD of each text from the mixture text

D(JS)(p(l)‘ ‘p(Z)) ﬂlD(KL)(p(l)‘ \M) 4 ﬂzD(KL)(P(z)\ \M)

I (1) I (2) I
Z m_log— — | n;p,”’ log 0 + m,p,”’ log 7
- M Pz Pz
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JSD Shift

JSD Shift of Presidential Speeches
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JSD Shift

‘-

Used relatively more by L.B.J
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JSD Shift

Used relatively more by L.B.J

—

jsd shift = sh.JSDivergenceShift(type2freq l=type2freq 1,

type2freq 2=type2freq 2,
base=2,
alpha=1.0)

JSD Shift of Presidential Speeches
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Measures for Comparing Texts: Dictionary Scores

Dictionary methods assign a weight, or score, to each word in the vocabulary. |If done carefully, scores can
‘measure” sentiment, hatefulness, respect, morality, or any number of other theoretical constructs
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Measures for Comparing Texts: Dictionary Scores

Dictionary methods assign a weight, or score, to each word in the vocabulary. |If done carefully, scores can
‘measure” sentiment, hatefulness, respect, morality, or any number of other theoretical constructs

We calculate the average score by taking a weighted average over all words

®=) $.p,
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Measures for Comparing Texts: Dictionary Scores

Dictionary methods assign a weight, or score, to each word in the vocabulary. |If done carefully, scores can
‘measure” sentiment, hatefulness, respect, morality, or any number of other theoretical constructs

We calculate the average score by taking a weighted average over all words
D = Z ¢.D;
T

We can get an individual word’s contribution to the difference between two average scores

50 = 3 4Pp? — gl pt"
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Sentiment Shift
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Sentiment Shift

5P = pGW.B) _ plL.BJ)

Directly contribute to G.W.B. < L.B.J
4—
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Counteract G.W.B. < L.B.J.
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Sentiment difference would be even greater otherwise
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Measures for Comparing Texts

Measure Advantages Drawbacks
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Measures for Comparing Texts

Measure Advantages Drawbacks
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Measures for Comparing Texts

Measure Advantages Drawbacks
Proportions Simple, interpretable Emphasizes small differences between common words
Shannon entropy Accounts for how “surprising” a word is Surprisal weighting can't always offset common words
Tsallis entropy Tunability between rare and common words Requires ad hoc choice of parameter
Kullback-Leibler divergence Measures divergence from reference text Only well-defined when texts have all the same words

Effective at drawing out differences

across the word distribution Difficult to interpret word-level contributions

Jensen-Shannon divergence
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Measures for Comparing Texts

Measure Advantages
Proportions Simple, interpretable
Shannon entropy Accounts for how “surprising” a word is
Tsallis entropy Tunability between rare and common words
Kullback-Leibler divergence Measures divergence from reference text

Effective at drawing out differences

Jensen-Shannon divergence across the word distribution

Theoretical concepts can be encoded

Dictionary scores through user-defined weights

Computational Story Lab, Summer 2020 13.7

Drawbacks

Emphasizes small differences between common words
Surprisal weighting can't always offset common words
Requires ad hoc choice of parameter

Only well-defined when texts have all the same words
Difficult to interpret word-level contributions

Potential serious concerns about measurement validity
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For any measure where we can get individual word contributions,
we should always plot a simple word shift plot

14.1



For any measure where we can get individual word contributions,
we should always plot a simple word shift plot

For any measure that we can write as a weighted average or
difference Iin weighted averages, we can go further

14.2



Reference Scores

Consider sentiment analysis as an example
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Reference Scores

Consider sentiment analysis as an example

The Story Lab found that there is a universal
positivity bias in human language
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3: Spanish: Google Web Crawl
Nanish: Google Books

L~ \_&nish: Twitter
Nonuguese: Google Web Crawl
P Iyr-’"""v?Qciuguese: Twitter
'3 :I: Il j English: Google Books
| a: it English: New York Times

: : ) German: Google Web Crawl

| - N French: Google Web Crawl

. /|l ;;Eiglish: Twitter

' a:v ‘ ' ' T3 Indonesian: Movie subtitles
:]:]: IR German: Twitter
4: | Russian: Twitter

_=mFrench: Google Books

German: Google Books

f: : '-. Y French: Twitter
4: : Russian: Movie and TV subtitles
| EI | | Arabic: Movie and TV subtitles
:u:' Iy | Indonesian: Twitter
: | j: { / : Korean: Twitter

\ :[ | Russian: Google Books

English: Music Lyrics

Korean: Movie subtitles

Chinese: Google Books
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:l:: Spanish: Google Web Crawl

Reference Scores Y -

| LN K&nish: Twitter
Nortuguese: Google Web Crawl
_‘___‘ék,ﬂuguese: Twitter
\ 1 Y‘Y ' & i A /

| L/ / English: Google Books

Consider sentiment analysis as an example

| CI: English: New York Times
: : /] German: Google Web Crawl

| - \ French: Google Web Crawl

The Story Lab found that there is a universal AL Engion: e

p 0 SitiVity b i asS i N h UMman |a N g ua g - IS ‘ Indonesi'an: Movie subtitles
£I: ~ German: Twitter

: : [ | Russian: Twitter

_=/I\¥French: Google Books

German: Google Books

The bias is with respect to a reference

g,{,ﬁ: - \  French: Twitter

4: /' Russian: Movie and TV subtitles
. . . | ‘ | | Arabic: Movie and TV subtitles
Qualitatively, we know that labMT words with i e

scores > b are positive and those with «M
Scores < b are negative Y2 iN\%

English: Music Lyrics

Korean: Movie subtitles

Chinese: Google Books
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Reference Scores

We can encode qualitatively different regimes of scores in our word shifts by applying a reference score
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We can encode qualitatively different regimes of scores in our word shifts by applying a reference score

We can rewrite any difference of weighted averages to incorporate a reference score

= 2 (¢, — @) (p = p)
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Reference Scores

We can encode qualitatively different regimes of scores in our word shifts by applying a reference score

We can rewrite any difference of weighted averages to incorporate a reference score

— Z (¢, — D7) (p@ — pD)

word score
with respect
to reference
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Reference Scores

We can encode qualitatively different regimes of scores in our word shifts by applying a reference score

We can rewrite any difference of weighted averages to incorporate a reference score

= 2 (¢, — @) (p& — p)

difference in
frequency
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Word Contributions

60, = (¢, — @) (p? - p")

/- M1
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Word Contributions

60, = (¢, — @) (p? - p")

/- M1

+ T

+ 1

-1

Word Shift Contribution 6®-
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L.B.J.: (I)avg - 5.98
G.W.B.: 4,5 =15.88

S e nt I m e nt S h I ft o R—— - + T Relatively positive word used more often
> -
N — 4 Relatively negative word used less often
+ 1 Relatively positive word used less often
— (G.W.B.) _ 4WL.B.J.) 5 -
5(D =0 O — T Relatively negative word used more often
dle) = § o
15
v, 20 A
=
S
D)
S5
=
30
35
40
45 -
50 -
4.0 2.0 0.0 2.0 4.0

Per type average score shift 6s4y4, r (%)



Sentiment Shift

5P = PGW.B) _ pL.BJ)

ol — 5

Directly contribute to G.W.B. < L.B.J
4—

L.B.J.: (I)avg - 5.98
G.W.B.: Oy = 5.88

+1 |

[+ 1

1 -

>

10 -

15 -

[\
o
1

Type rank

30

35 A

40 -

45 -

50 -

we

10°

think
peace

terror
iraq

terrorist [N
all| |
very| |
| |thank

south| |

weapons [l
billion [ |
hope | |
| | women
| |free
| | health
| | war
| |liberty

saddam [l
us| |

|| children
| | security
you | |
believe [ |
|| life

| | poverty
afghanistan [

| | appreciate
|| citizens

united | |

101 4

glestruction [

| | not
| | last
asia | |

102 3

1033

evil
tax
enemies

|| families
| child

| | money

| | research

america

freedom

Text Size:
L.B.]. .
G.W.B. =

2160

| | care

| | intelligence

| | problems

4.0 2.0 0.0 2.0 4.0
Per type average score shift 6savg, r (%)

+ T Relatively positive word used more often
— 4 Relatively negative word used less often

+ 1 Relatively positive word used less often

- Relatively negative word used more often

Counteract G.W.B. < L.B.J.
—>

Sentiment difference would be even greater otherwise



Generalized Word Shifts

Before, we assumed that a word's score Is the same across both texts

This limits our ability to use the full word shift framework for any of the entropy-based measures, or for
dictionary-based analyses using domain-adapted dictionaries
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Generalized Word Shifts

We can generalize word shifts to account for changes in scores

50 = 3 4Pp — gl p"

Computational Story Lab, Summer 2020 19.2 ¥ @ryanjgallag



Generalized Word Shifts

We can generalize word shifts to account for changes in scores

0= 3070~ op!

1
= 3|5 0+ 02) 0| (5 =) #5402 (92— 01"
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Generalized Word Shifts

We can generalize word shifts to account for changes in scores

0= 3070~ op!

1
= 3|5 00 +92) ~0| (5= p) 43 (02 ) (4 -0t

average
score
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Generalized Word Shifts

We can generalize word shifts to account for changes in scores

0= 3070~ op!

1
= 3|5 0+ 02) 00| (5 =)+ 5 (0402 (-0t

difference between average
score and reference

Computational Story Lab, Summer 2020 19.5 ¥ @ryanjgallag



Generalized Word Shifts

We can generalize word shifts to account for changes in scores

0= 3070~ op!

1
= 3|5 0 +42) ~ 0| (p2p0) 3 (404 52) (9~ 01"

difference in
frequency
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Generalized Word Shifts

We can generalize word shifts to account for changes in scores

0= 3070~ op!

1
o X R (G P e [

average frequency
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Generalized Word Shifts

We can generalize word shifts to account for changes in scores

0= 3070~ op!

1
= Z [ (¢ +¢2) — o )] (piz) —p§1)> > (pi” +p§2)) (cbiz) - ¢§”)

difference in
scores
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Word Contributions

1 1
50, = |5 (#+92) 0| (5= p0) 3 (0 +52) (42 - 90

/- B T7l o VIA
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Word Contributions

1 1
50, = |5 (#+92) 0| (5= p0) 3 (0 +52) (42 - 90

/- B T7l o VIA

+ 1V -
- 1V [

Generalized Word Shift Contribution 6

Computational Story Lab, Summer 2020 20.2 ¥ @ryanjgallag



Word Contributions

1 1
50, = |5 (#+92) 0| (5= p0) 3 (0 +52) (42 - 90

2 2
/- T7¢ /A
FTA
— 1A
o 1
\V/ — |
+ 1 A
-1
-1y
— TV

Generalized Word Shift Contribution 6
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Sentiment Shift

5P = PGW.B) _ pL.BJ)

O = 5

Using domain-adapted dictionaries
for the 1960s and 2000s



L.B.J.: (I)avg =0.03
G.W.B.: (Davg = '0.03

S e nt I m e nt S h I ft +l| - + T Relatively positive word used more often

> — 1 Relatively negative word used less often

+ 1 Relatively positive word used less often

5P = pGW.B) _ plL.BJ)

5 - — | Relatively negative word used more often

ol — 5

Higher word positivity than before
10

Using domain-adapted dictionaries /. Lower word positivity than before

for the 1960s and 2000s

15 1

Type rank

N
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|

30

35 A

40 -

45 -

50 -

15 -1.0 05 00 05 1.0 15
Per type average score shift 6savg, r (%)



L.B.J.: (I)avg = 0.03
G.W.B.: (Davg =-0.03

Sentiment Shift

+1 | +1

1 -1

>

5P = pGW.B) _ plL.BJ)

O — 5

10

Using domain-adapted dictionaries
for the 1960s and 2000s

15 -

N
(=)
1

Directly contribute to G.W.B. < L.B.J
4—

Type rank

N
o1
|

30 A

35 A

40 -

45 -

50 -

mr* |

nation
these
terrorists*
us [
irac* |

americans [
am
country

| great

| | freedom

| | together

poverty

destruction
america
terrorist*
weapons
iraqi*

help

better

very Il
[ strong

those [
| [ Jaction
1| war
| | viet*
vietnam

every
afghanistan*
act

100 right
| fellow
liberty
[ ]proud
1075 appreciate
: aggression*
work
102 nam* .
] nemies [N Text Size:

)

] [ T Jjob L.B.].
103 3 [T Jold G.W.B. Il

many
1 T families
0 50 100 [ ]important

216@:]  saddam* [
|| nations

15 10 05 00 05 1.0 15
Per type average score shift 6savg, r (%)

+ T Relatively positive word used more often
— 4 Relatively negative word used less often

+ 1 Relatively positive word used less often

— | Relatively negative word used more often

Higher word positivity than before

\/ Lower word positivity than before

Counteract G.W.B. < L.B.J.
—>

Sentiment difference would be even greater otherwise



Comparison Measures as Weighted Averages

Measure Word Contribution 6@,

Proportions

Shannon entropy

Tsallis entropy
Kullback-Leibler divergence

Jensen-Shannon divergence

Generalized JSD
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Comparison Measures as Weighted Averages

Measure

Proportions

Shannon entropy

Tsallis entropy

Kullback-Leibler divergence

Jensen-Shannon divergence

Generalized JSD
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Comparison Measures as Weighted Averages

Measure

Proportions

Shannon entropy

Tsallis entropy

Kullback-Leibler divergence

Jensen-Shannon divergence

Generalized JSD
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Case Study: 280 Character Tweets

In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)
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Case Study: 280 Character Tweets

In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)

Question: How did that change the information content of tweets?
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Case Study: 280 Character Tweets

In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)

Question: How did that change the information content of tweets?
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Case Study: 280 Character Tweets

In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)

Question: How did that change the information content of tweets?
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Twitter Entropy Shift

SH = H(280) o H(140)
Dre) — f(140)



Twitter Entropy Shift

SH = H(280) o H(140)
Dre) — f(140)
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Per type average score shift 6say4,r (%)

Relatively surprising word used more often
Relatively unsurprising word used less often
Relatively surprising word used less often

Relatively unsurprising word used more often

Higher surprisal than before

Lower surprisal than before



Twitter Entropy Shift

SH = H(280) o H(140)
Dre) — (140

10 A

Directly contribute to H(280) < H(140)
4'......................----------------
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---------------------------'>

Entropy difference would be even greater otherwise



L.B.].: (I)avg =0.03
G.W.B.: (I)avg = ‘0.03

Conclusion st
- A
. Look at the words! e
| freedom
2. We can visualize any measure where individual word ogethr
contributions can be extracted
15- e
5. We can use a detailed word shift decomposition to i .
visualize any weighted average g
4. Many common measures can be reformulated as e
° | [ action
welghted averages =
All visualizations were made using the Shifterator Python package e - o
[ |proud
o . . 10%4 | [Jappreciate
https://github.com/ryanjgallagher/shifterator Ea
_ qnemies [N - LOBTIJ"OGLSize:
pip install shifterator 45-1035 \ - o ha owbm
—T— T tamilies |
: EIE;()@TI ls(,)z(i)ddam* -jj mmportant
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