Word Shift: A General Method for Visualizing and Explaining Pairwise Comparisons Between Texts

Ryan J. Gallagher **y** @ryanjgallag

Northeastern University Network Science Institute

Talk Outline

- 1. Review common text comparison measures, including dictionary measures
- 2. Show how differences between texts can be visualized at the word level
- 3. Review the basic form of the word shift graphs
- 4. Introduce generalized word shift graphs for weighted averages
- 5. Discuss a case study about Twitter and 280 character tweets

C Searc	ch or jump to / Pull req	uests Issues Marketplace Explo		
📮 ryanjgallagher / shifterator				
<> Code	! Issues 6 গে Pull requests	Actions III Projects III W		
	<mark>} P master →</mark> ਮੈ 1 branch ਾ 0 tags			
	🜍 ryanjgallagher Update docs			
	docs	Update docs		
	shifterator	Tweaked some parameter settings i		
	tests	Removed the TsallisShift. Merged the		
	🗅 .gitignore	Automated code formatting with Bla		
	LICENSE.txt	pip files		
	MANIFEST.in	Provide support for lexicons within		
	README.md	Updates		
	requirements.txt	Automated code formatting with Bla		
	🗅 setup.py	Updates		

https://github.com/ryanjgallagher/shifterator

https://shifterator.readthedocs.io

pip install shifterator

ore		Ļ +- 🤹
		⊙ Unwatch → 4 ☆ Star 105 양 Fork 9
/iki 🔃 Security 🗠 Insights	log Settings	
Go to file Add file -	⊻ Code -	About ණ
c5627fb 11 days ago 🖸) 118 commits	Interpretable data visualizations for understanding how texts differ at the word level
	11 days ago	
in plotting.py.	12 days ago	natural-language-processing sentiment-analysis information-theory
ne tsallis shift functionality into	19 days ago	computational-social-science
ack and Isort. Removed several un	2 months ago	digital-humanities text-analysis
	3 months ago	text-as-data data-visualization
shifterator	2 months ago	D Readme
	11 days ago	최초 Apache-2.0 License
ack and Isort. Removed several un	2 months ago	
	11 days ago	Releases

How do we compare two texts?

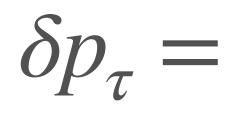
Measures for Comparing Texts: Proportions

One of the simplest ways of comparing two texts is by comparing how often a word appears in each of them

Measures for Comparing Texts: Proportions

One of the simplest ways of comparing two texts is by comparing how often a word appears in each of them

If τ is a word in our vocabulary, then we compare its relative frequency in each text



$$p_{\tau}^{(2)} - p_{\tau}^{(1)}$$

Measures for Comparing Texts: Proportions

One of the simplest ways of comparing two texts is by comparing how often a word appears in each of them

If τ is a word in our vocabulary, then we compare its relative frequency in each text

$\delta p_{\tau} =$

We can rank words by this difference!

 $p_2 - p_1 > 0$ word is more common in second text

 $p_2 - p_1 < 0$ word is more common in first text

$$p_{\tau}^{(2)} - p_{\tau}^{(1)}$$

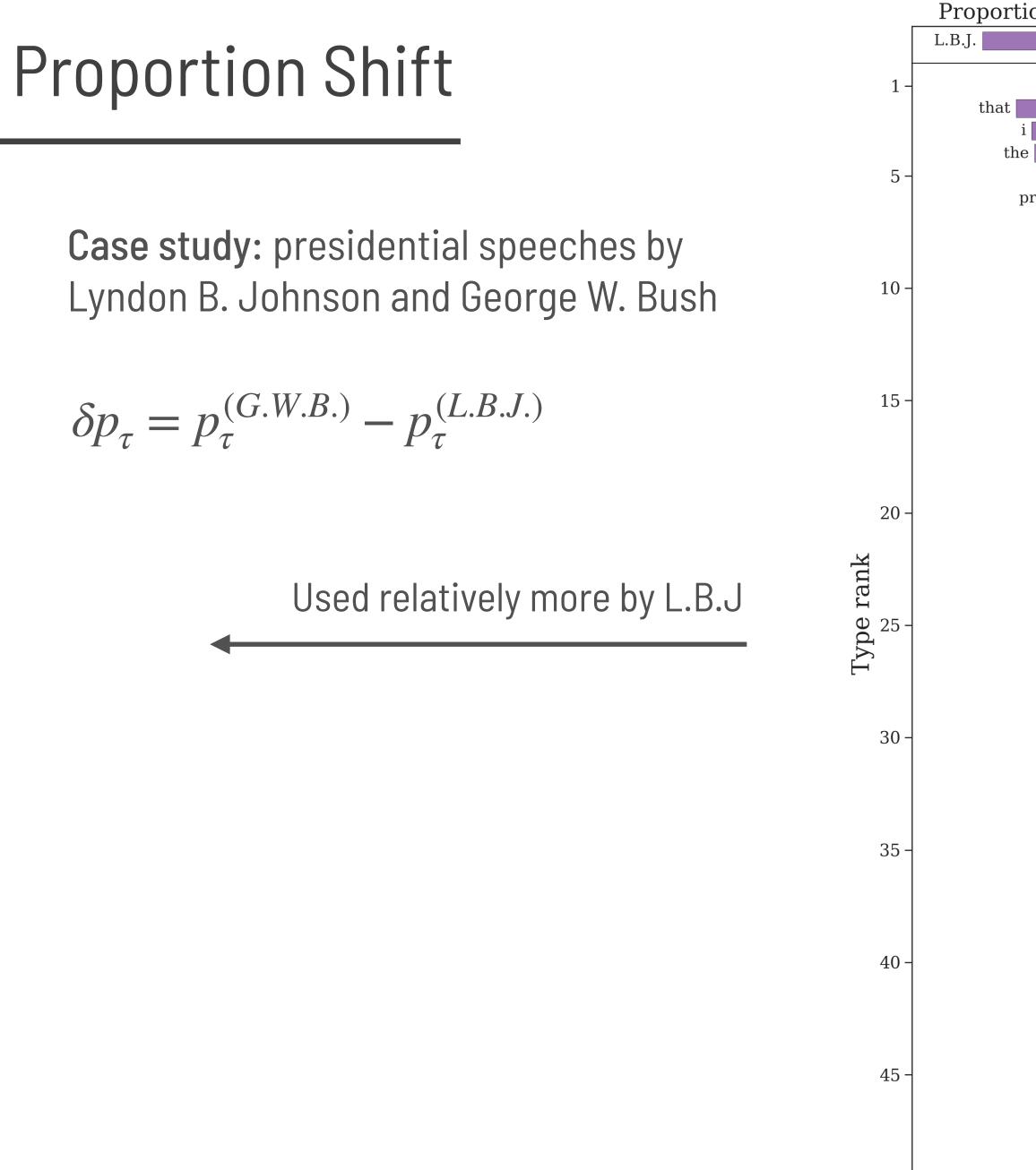
Proportion Shift

Case study: presidential speeches by Lyndon B. Johnson and George W. Bush

Proportion Shift

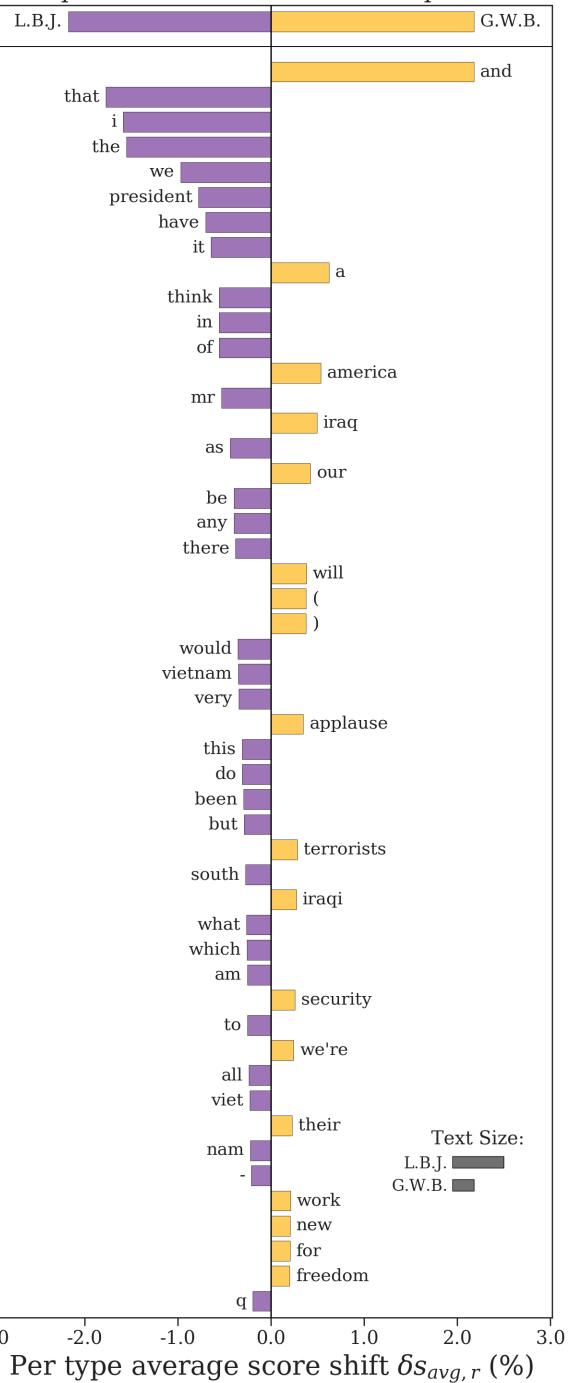
Case study: presidential speeches by Lyndon B. Johnson and George W. Bush

$$\delta p_{\tau} = p_{\tau}^{(G.W.B.)} - p_{\tau}^{(L.B.J.)}$$

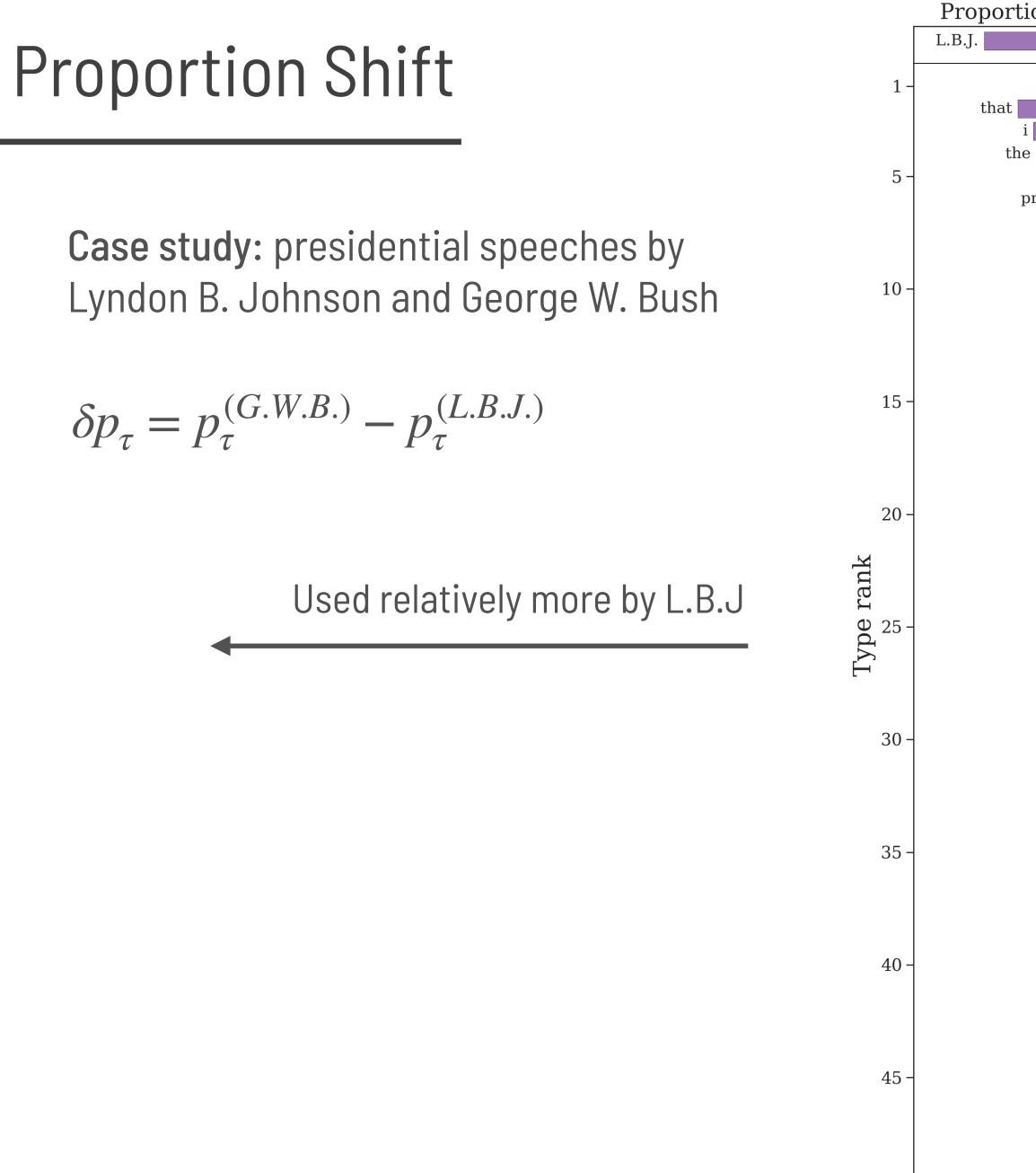


-2.0 -3.0

50 ·

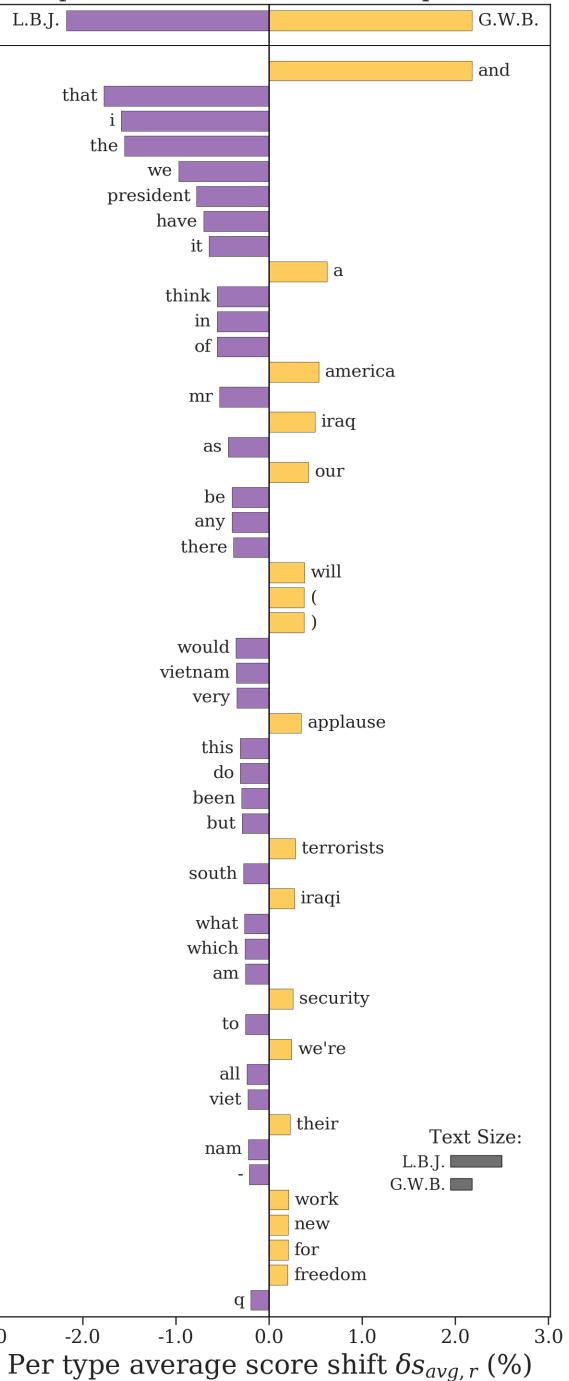


Used relatively more by G.W.B.



-2.0 -3.0

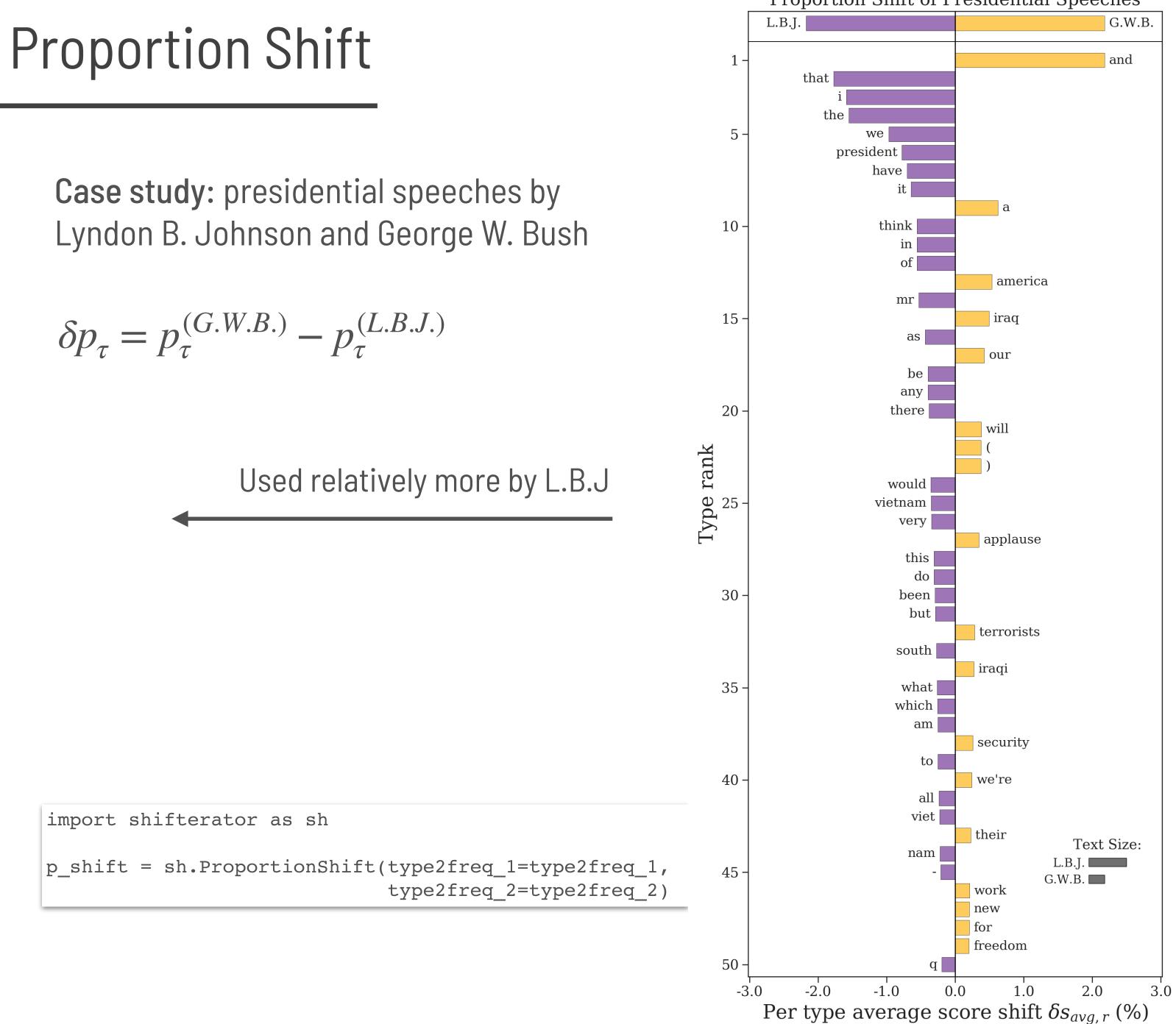
50 ·



Used relatively more by G.W.B.

Relative text size comparison

Over 2x as much text in L.B.J's speeches compared to G.W.B.



Used relatively more by G.W.B.

Relative text size comparison

Over 2x as much text in L.B.J's speeches compared to G.W.B.

Entropy attempts to account for both how frequent and how "surprising" each word is

 $H(P) = \sum_{\tau} p_{\tau} \log \frac{1}{p_{\tau}}$

Entropy attempts to account for both how frequent and how "surprising" each word is

Computational Story Lab, Summer 2020

 $H(P) = \sum_{\tau} p_{\tau} \log \frac{1}{p_{\tau}}$

surprisal of word au

Entropy attempts to account for both how frequent and how "surprising" each word is

Computational Story Lab, Summer 2020

 $H(P) = \sum_{\tau} p_{\tau} \log \frac{1}{p_{\tau}}$

average surprisal

Entropy attempts to account for both how frequent and how "surprising" each word is

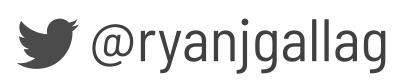
H(P) =

We can compare two texts by comparing contributions to the entropy of each text

$$\delta H = H(P^{(2)}) - H(P^{(1)}) = \sum_{\tau} p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(2)}} - p_{\tau}^{(1)} \log \frac{1}{p_{\tau}^{(1)}}$$

Computational Story Lab, Summer 2020

$$\sum_{\tau} p_{\tau} \log \frac{1}{p_{\tau}}$$

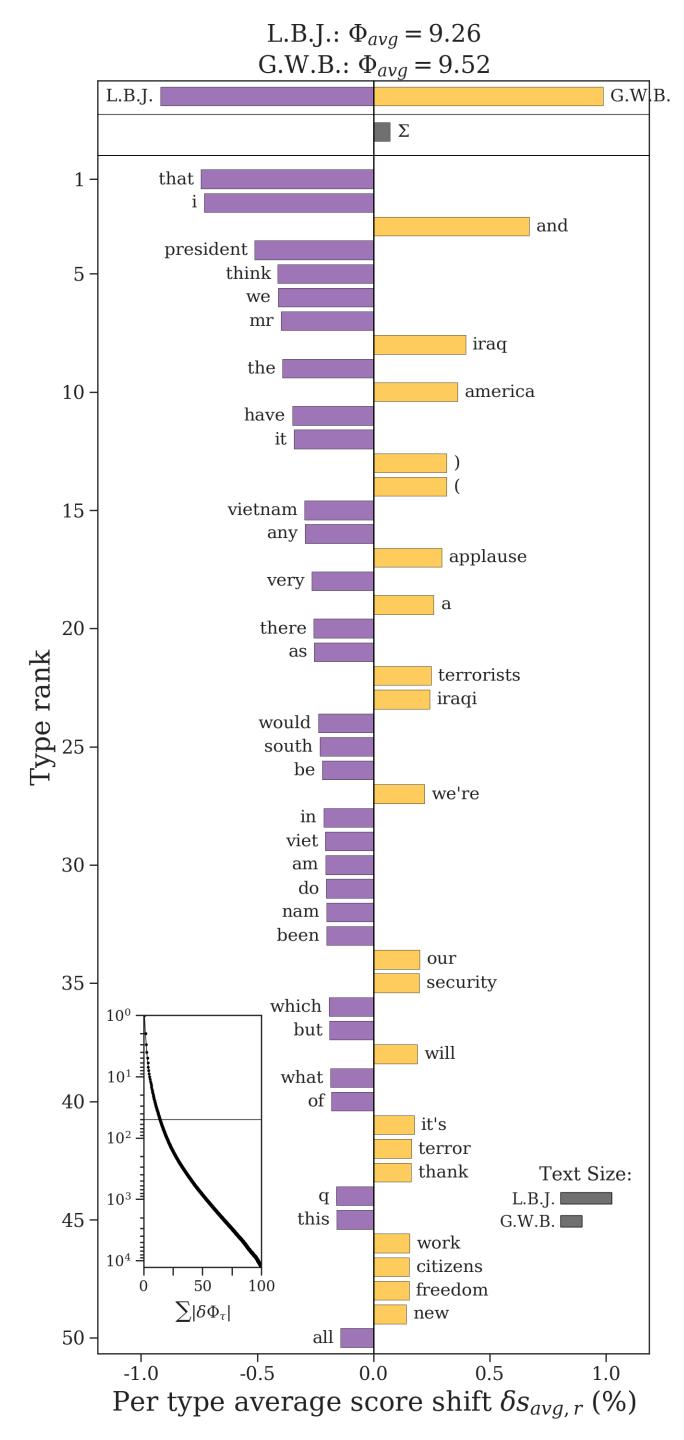


5.4

Shannon Entropy Shift

Note: We're calculating H(G.W.B) - H(L.B.J)

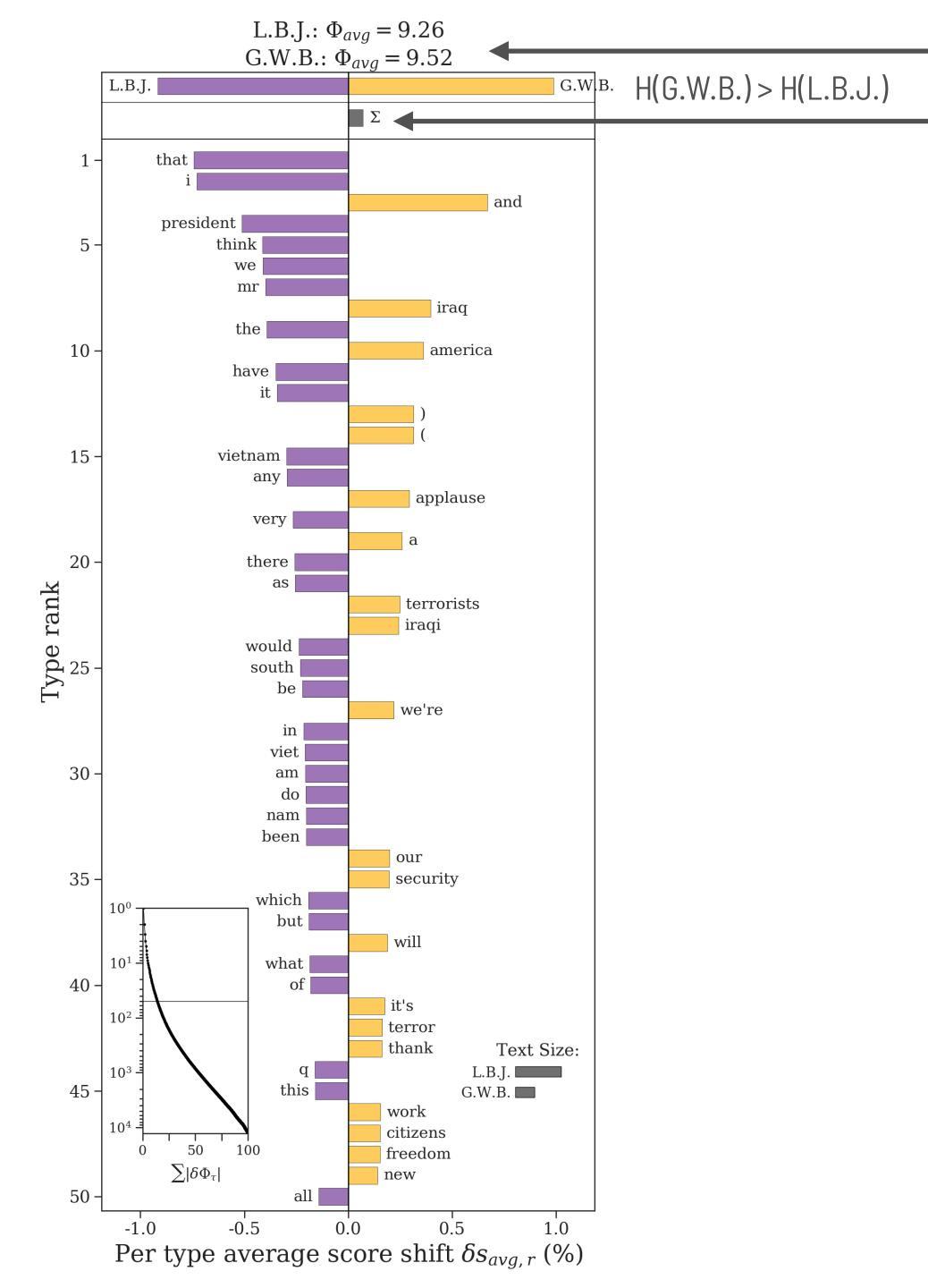
Important for interpreting word direction



Shannon Entropy Shift

Note: We're calculating H(G.W.B) - H(L.B.J)

Important for interpreting word direction



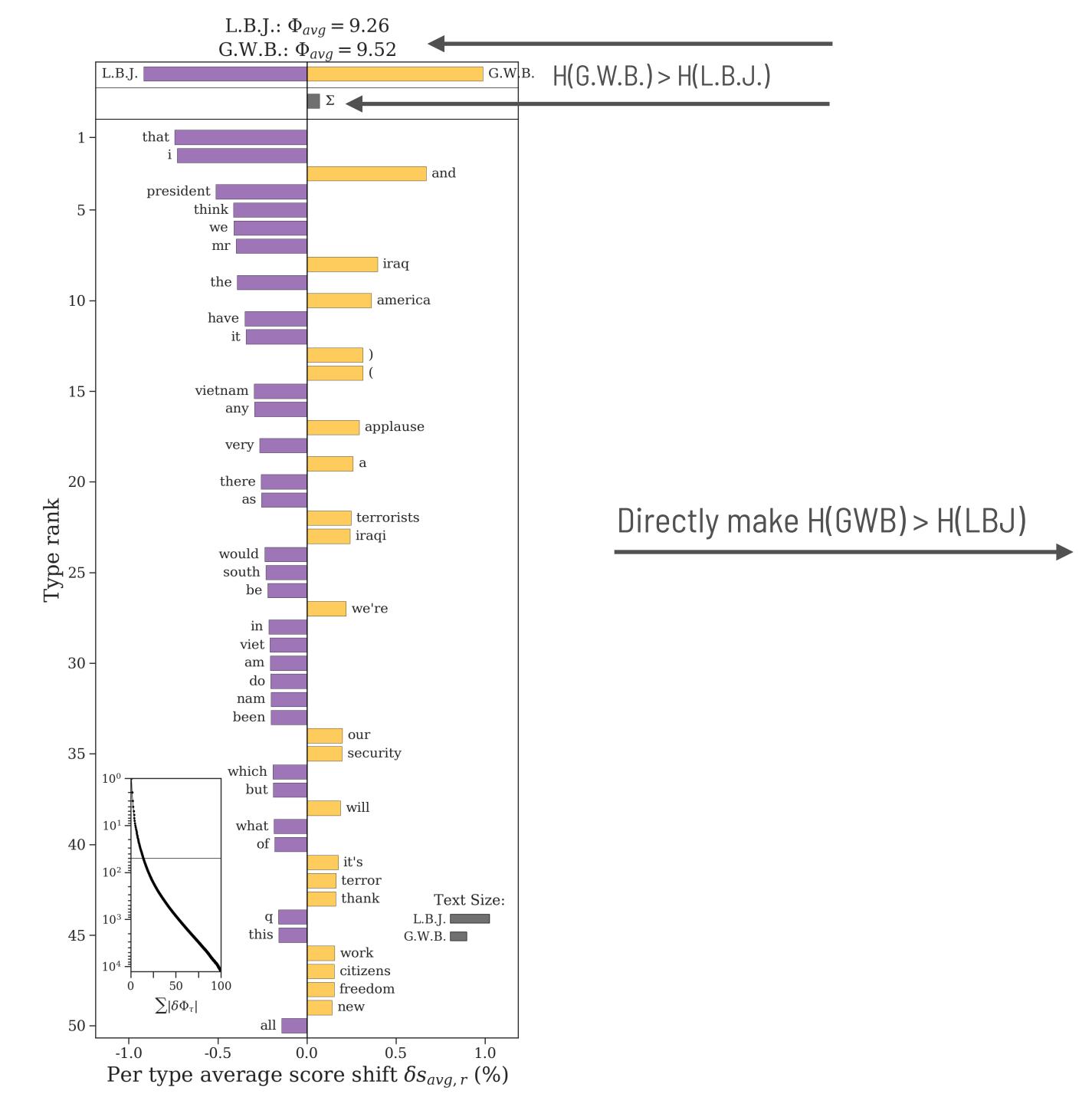
Shannon Entropy Shift

Note: We're calculating H(G.W.B) - H(L.B.J)

Important for interpreting word direction

Counteract H(GWB) > H(LBJ)

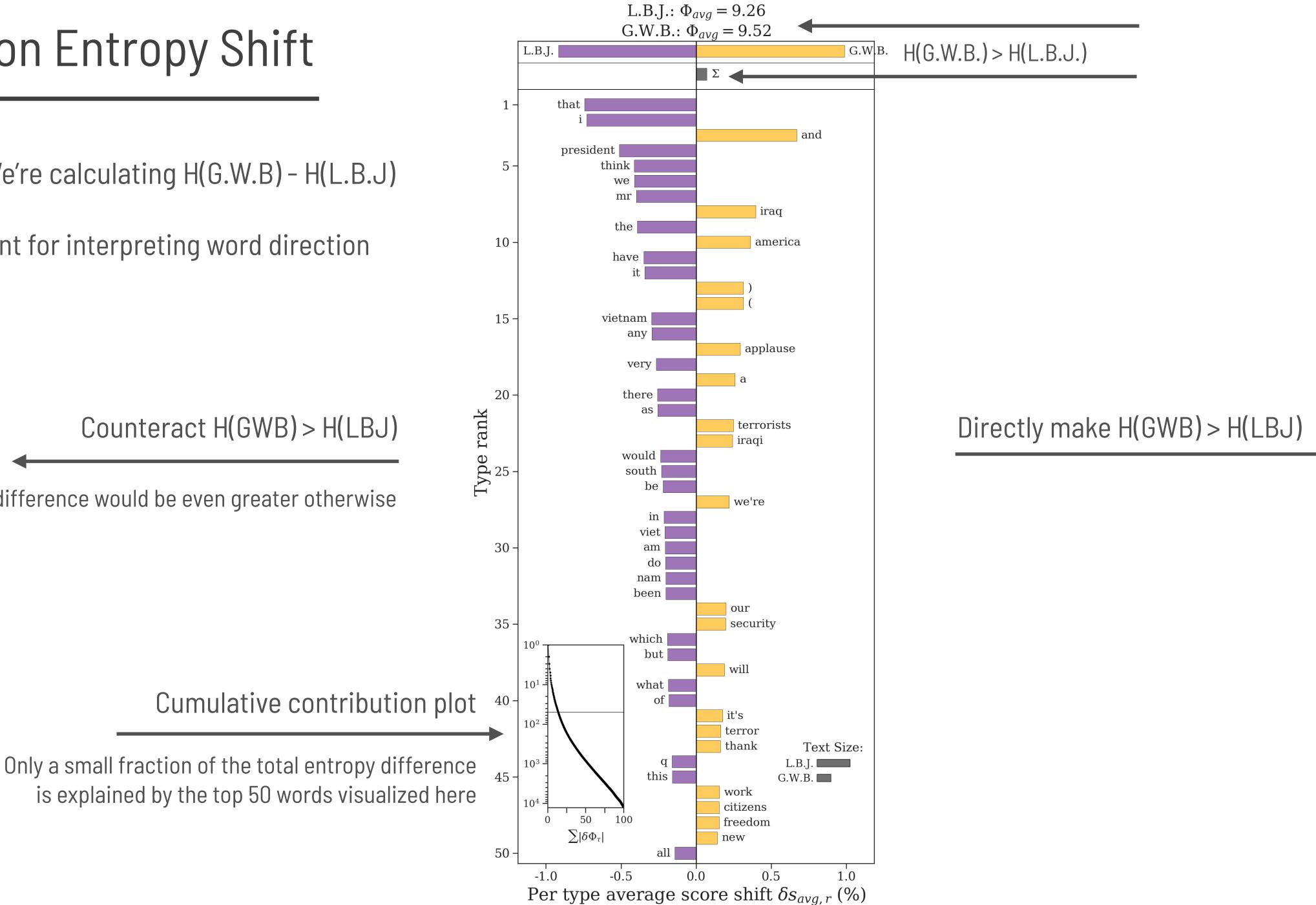
Entropy difference would be even greater otherwise



Note: We're calculating H(G.W.B) - H(L.B.J)

Important for interpreting word direction

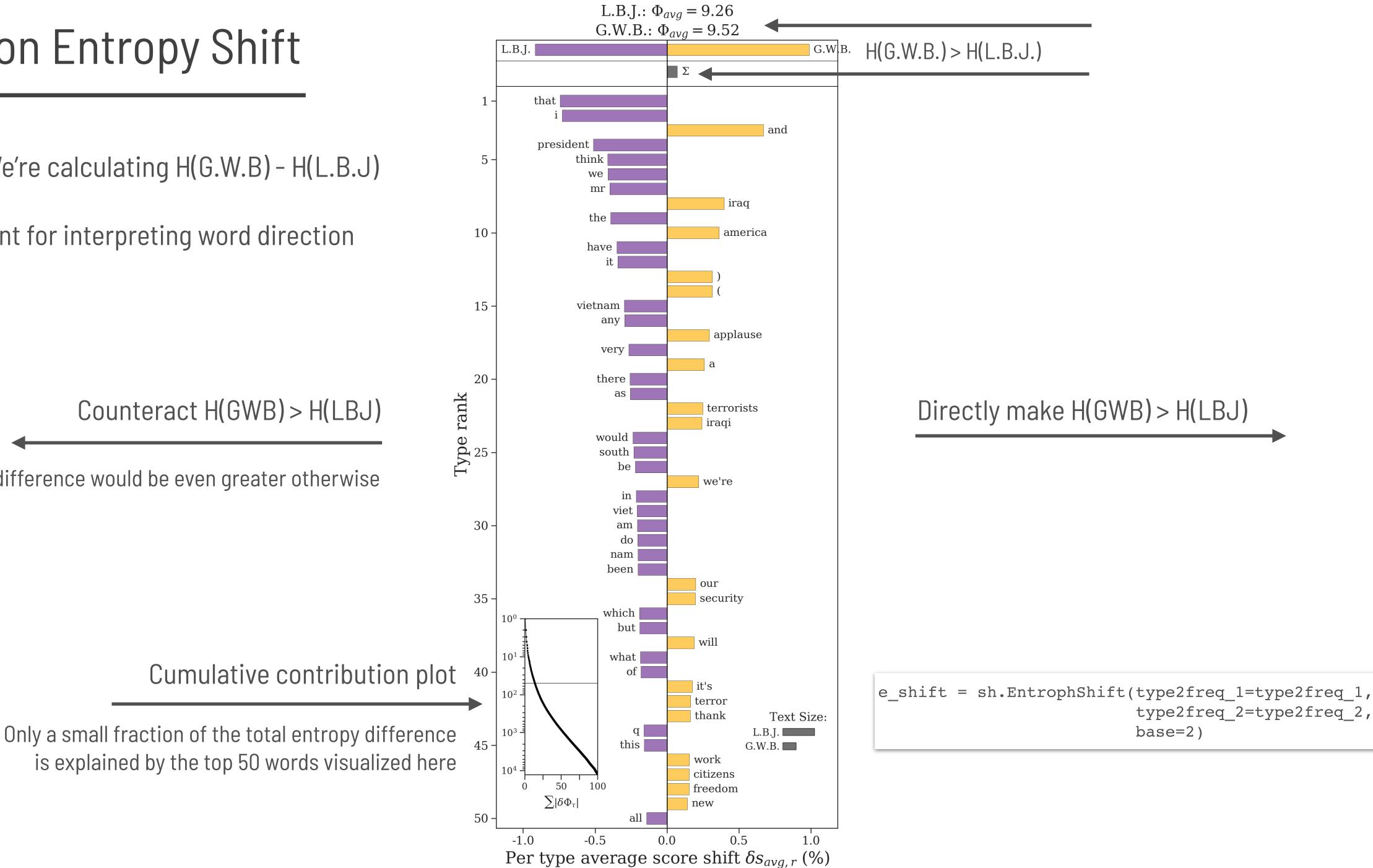
Entropy difference would be even greater otherwise

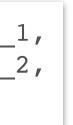


Note: We're calculating H(G.W.B) - H(L.B.J)

Important for interpreting word direction

Entropy difference would be even greater otherwise





Measures for Comparing Texts: Tsallis Entropy

We can generalize entropy to emphasize either common or uncommon words

- $\alpha < 1$ emphasizes rare words
- $\alpha = 1$
- $\alpha > 1$ emphasizes common words

Computational Story Lab, Summer 2020

$$\frac{1}{-\alpha} \left(\sum_{\tau} p_{\tau}^{\alpha} - 1 \right)$$

balances between rare and frequent words, equivalent to Shannon entropy

Measures for Comparing Texts: Tsallis Entropy

We can generalize entropy to emphasize either common or uncommon words

Like the Shannon entropy, we can difference between the Tsallis entropies of two texts

$$\delta H_{\alpha} = H_{\alpha} (P^{(2)}) - H_{\alpha} (P^{(1)}) = -p_{\tau}^{(2)} \left[\frac{(p_{\tau}^{(2)})^{\alpha - 1}}{\alpha - 1} \right] + p_{\tau}^{(1)} \left[\frac{(p_{\tau}^{(1)})^{\alpha - 1}}{\alpha - 1} \right]$$

Computational Story Lab, Summer 2020

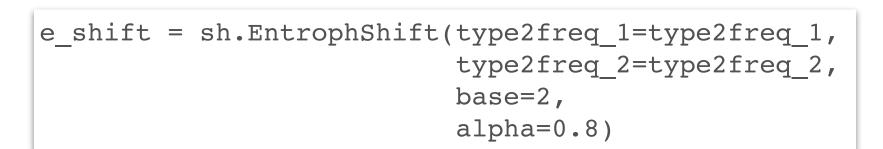
$$\frac{1}{-\alpha} \left(\sum_{\tau} p_{\tau}^{\alpha} - 1 \right)$$

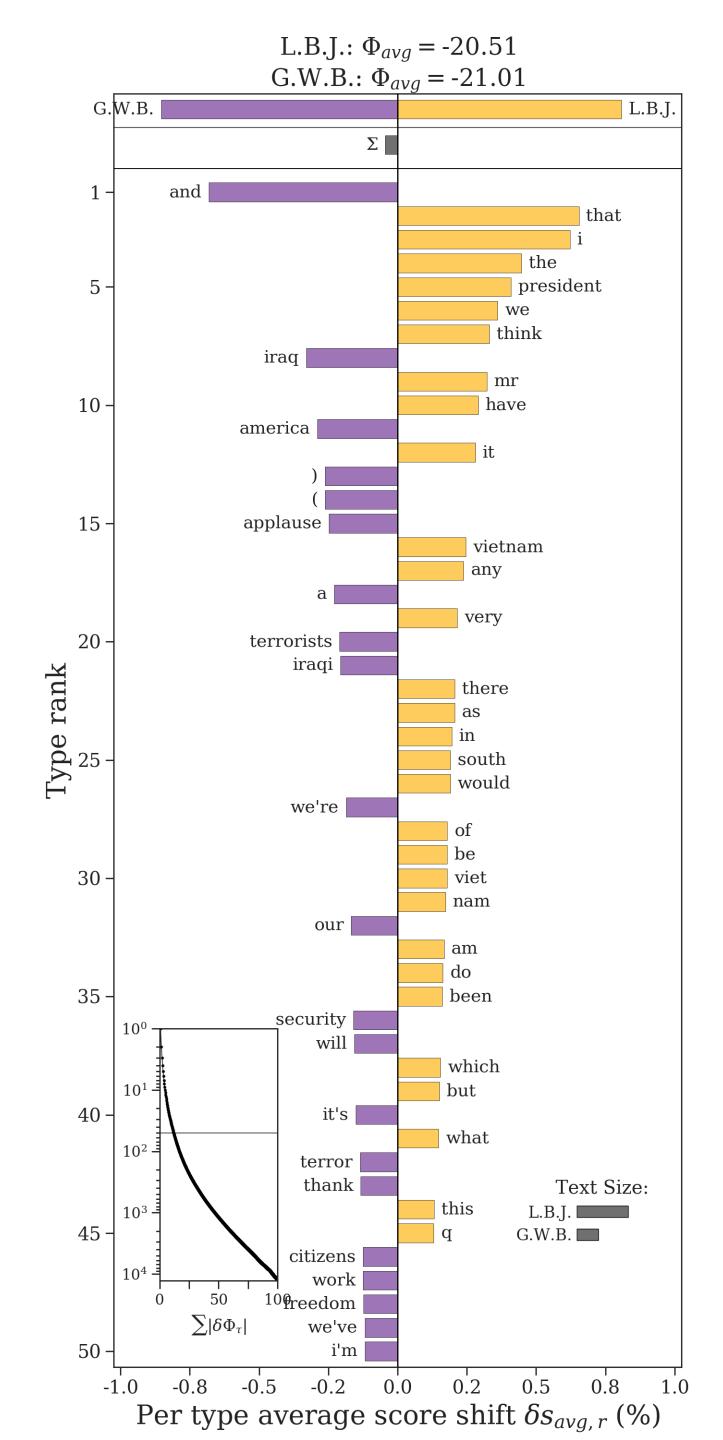
7.2

Tsallis Entropy Shift

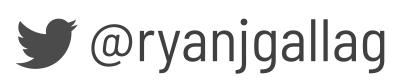
Note: We're calculating H(G.W.B) - H(L.B.J)

Here, $\alpha = 0.8$





Sometimes we want to compare one text to a reference text



Sometimes we want to compare one text to a reference text

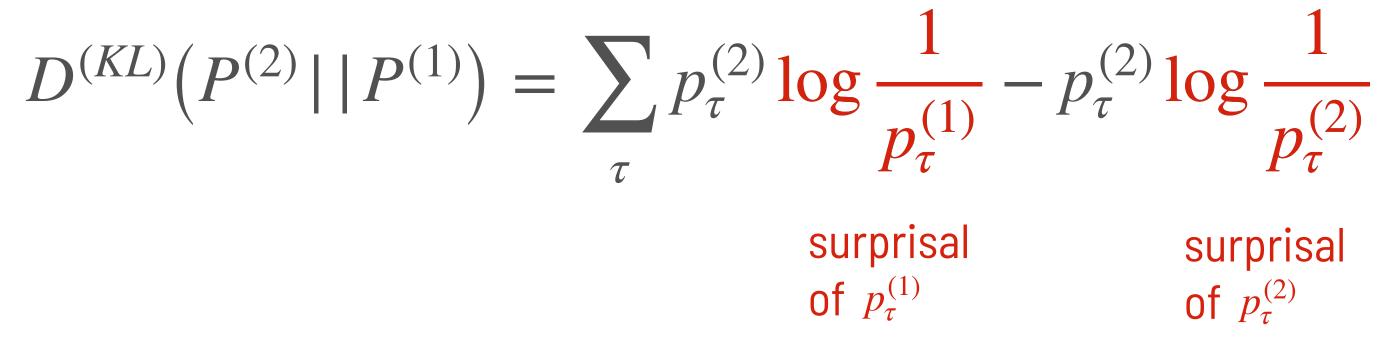
Say $P^{(1)}$ is the reference, and $P^{(2)}$ is the comparison. The Kullback-Leibler divergence (KLD) is

$D^{(KL)}(P^{(2)} | | P^{(1)}) = \sum_{k=1}^{KL} \sum_{i=1}^{KL} \frac{1}{i} \sum_{k=1}^{KL} \frac{1}{i} \sum_{i=1}^{KL} \frac{1}{i} \sum_{i$

$$\sum_{\tau} p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(1)}} - p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(2)}}$$

Sometimes we want to compare one text to a reference text

Say $P^{(1)}$ is the reference, and $P^{(2)}$ is the comparison. The Kullback-Leibler divergence (KLD) is



Sometimes we want to compare one text to a reference text

Say $P^{(1)}$ is the reference, and $P^{(2)}$ is the comparison. The Kullback-Leibler divergence (KLD) is

$D^{(KL)}(P^{(2)} | | P^{(1)}) = \sum_{k=1}^{KL} \sum_{i=1}^{KL} \frac{1}{i} \sum_{k=1}^{KL} \frac{1}{i} \sum_{i=1}^{KL} \frac{1}{i} \sum_{i$ τ

Computational Story Lab, Summer 2020

$$\sum_{\tau} p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(1)}} - p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(2)}}$$

weighted by $p_{\tau}^{(2)}$



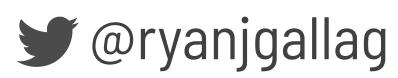
Sometimes we want to compare one text to a reference text

Say $P^{(1)}$ is the reference, and $P^{(2)}$ is the comparison. The Kullback-Leibler divergence (KLD) is

$$D^{(KL)}(P^{(2)} | | P^{(1)}) = \sum_{\tau} p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(1)}} - p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(2)}}$$

Drawback: only well-defined if *all* the words in the reference text are also in the comparison text

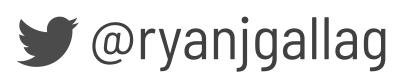
The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD



The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD

We first define a mixture text M

 $M = \pi_1 P^{(1)} + \pi_2 P^{(2)}$



The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD

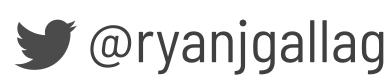
We first define a mixture text M

 $M = \pi_1$

Then, the JSD is the average KLD of each text from the mixture text

$$D^{(JS)}(P^{(1)} | | P^{(2)}) = \pi_1 D^{(KL)}(P^{(1)} | | M) + \pi_2 D^{(KL)}(P^{(2)} | | M)$$

$$_{1}P^{(1)} + \pi_{2}P^{(2)}$$



The Jensen-Shannon divergence (JSD) attempts to account for the shortcomings of the KLD

We first define a mixture text M

 $M = \pi_1$

Then, the JSD is the average KLD of each text from the mixture text

$$D^{(JS)}(P^{(1)} | | P^{(2)}) = \pi_1 D^{(KL)}(P^{(1)} | | M) + \pi_2 D^{(KL)}(P^{(2)} | | M)$$
$$= \sum_{\tau} m_{\tau} \log \frac{1}{m_{\tau}} - \left(\pi_1 p_{\tau}^{(1)} \log \frac{1}{p_{\tau}^{(1)}} + \pi_2 p_{\tau}^{(2)} \log \frac{1}{p_{\tau}^{(2)}}\right)$$

Computational Story Lab, Summer 2020

$$_{1}P^{(1)} + \pi_{2}P^{(2)}$$

10.5

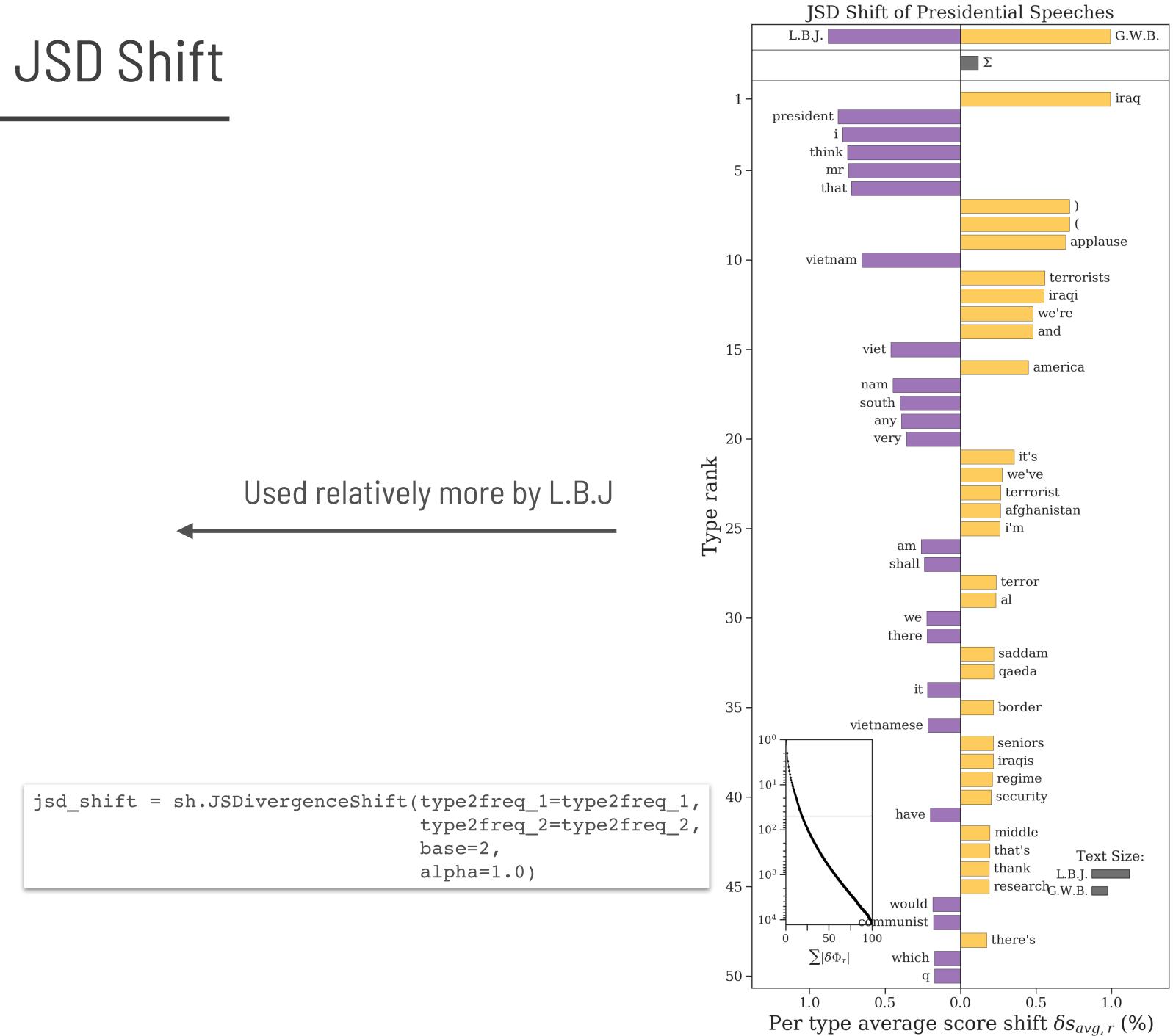


JSD Shift of Presidential Speeches

All positive contributions



Used relatively more by G.W.B.



Used relatively more by G.W.B.

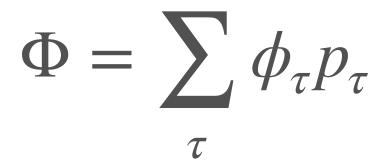
Measures for Comparing Texts: Dictionary Scores

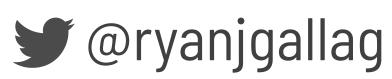
Dictionary methods assign a weight, or score, to each word in the vocabulary. If done carefully, scores can "measure" sentiment, hatefulness, respect, morality, or any number of other theoretical constructs

Measures for Comparing Texts: Dictionary Scores

Dictionary methods assign a weight, or score, to each word in the vocabulary. If done carefully, scores can "measure" sentiment, hatefulness, respect, morality, or any number of other theoretical constructs

We calculate the average score by taking a weighted average over all words





Measures for Comparing Texts: Dictionary Scores

Dictionary methods assign a weight, or score, to each word in the vocabulary. If done carefully, scores can "measure" sentiment, hatefulness, respect, morality, or any number of other theoretical constructs

We calculate the average score by taking a weighted average over all words

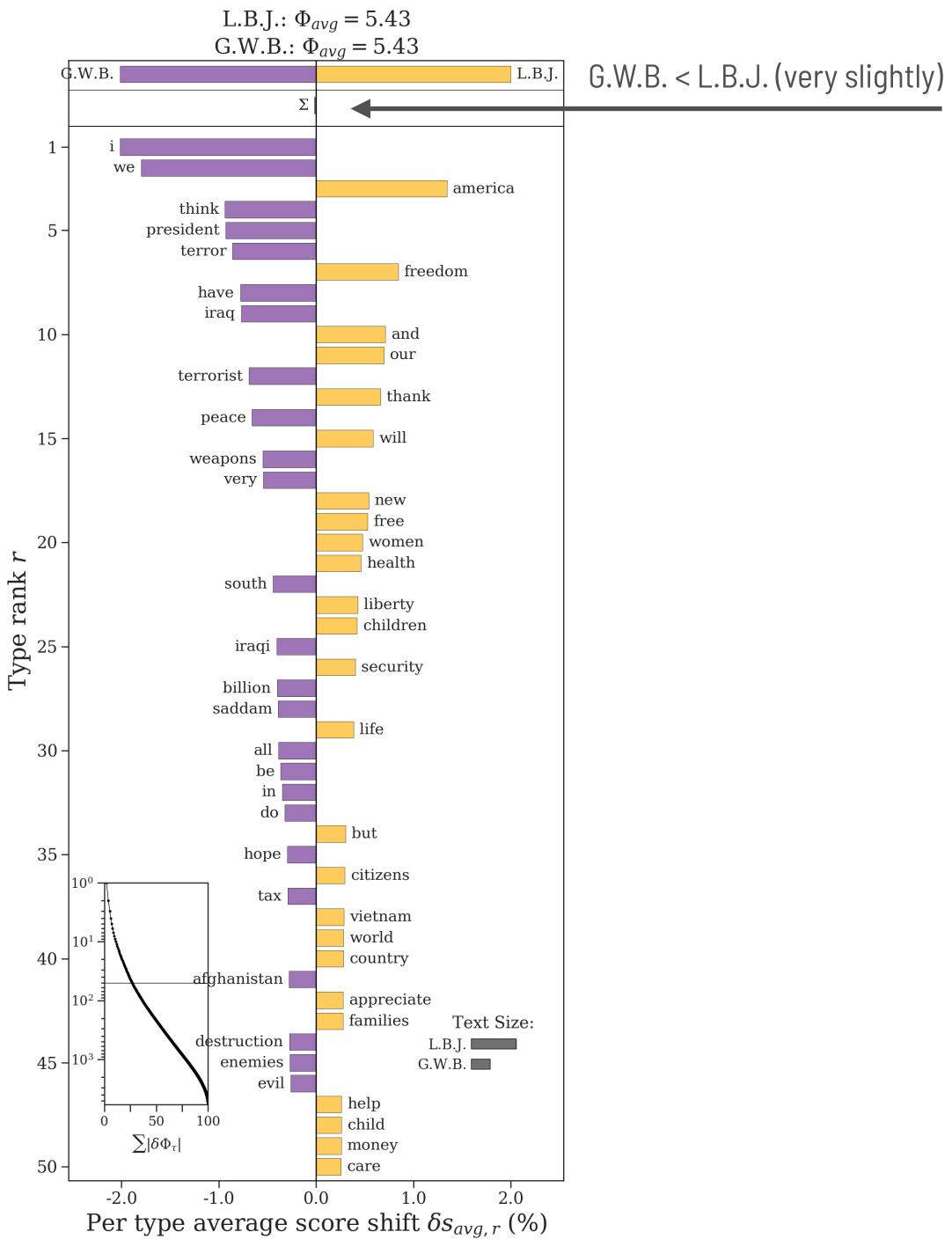
We can get an individual word's contribution to the difference between two average scores

$$\delta \Phi = \sum_{\tau} \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)}$$

Computational Story Lab, Summer 2020

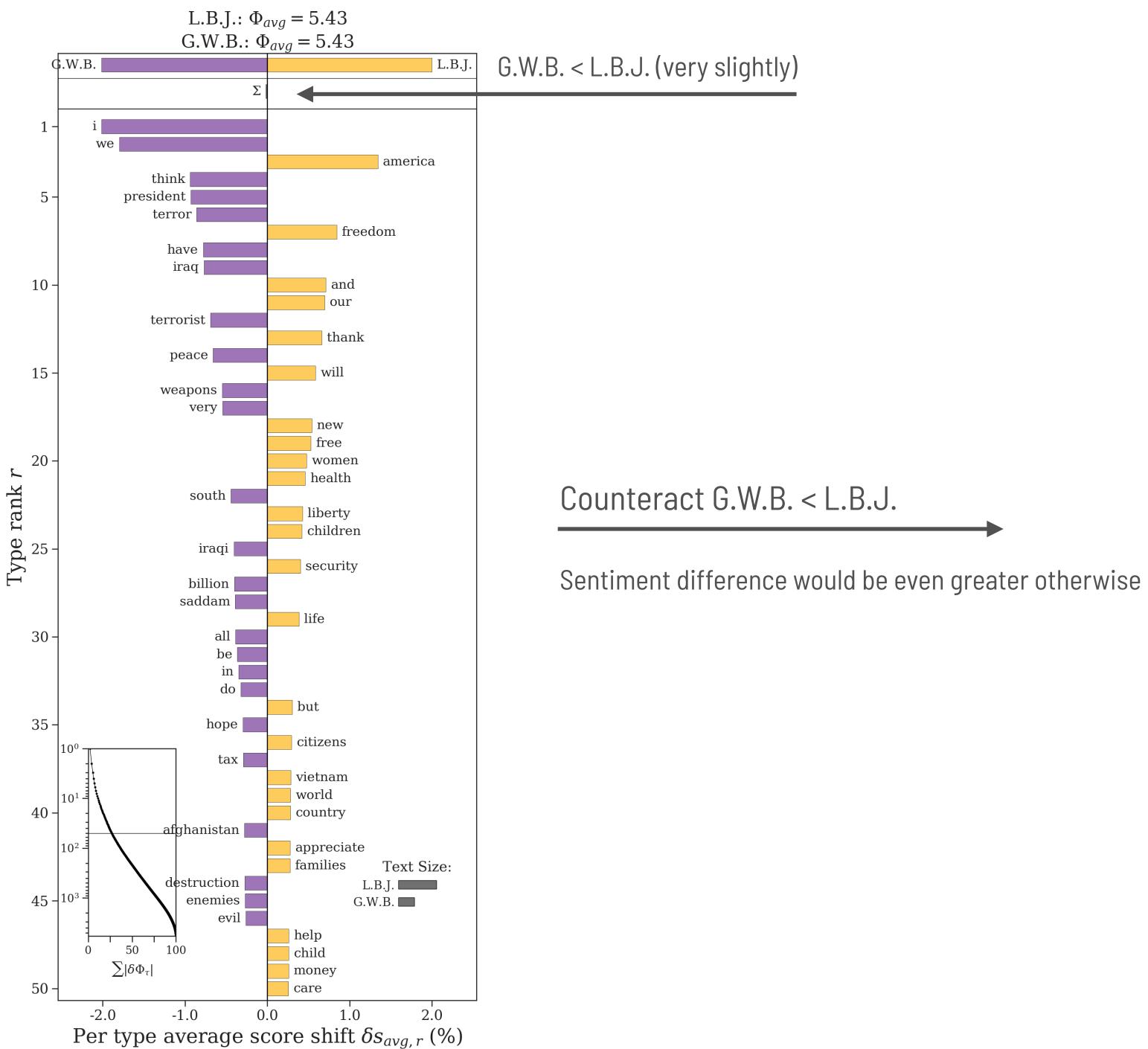
$$\Phi = \sum_{\tau} \phi_{\tau} p_{\tau}$$

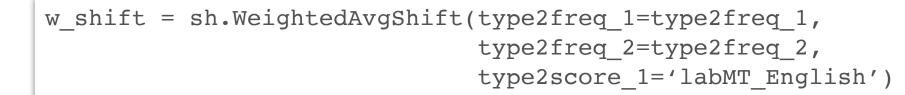
Sentiment Shift

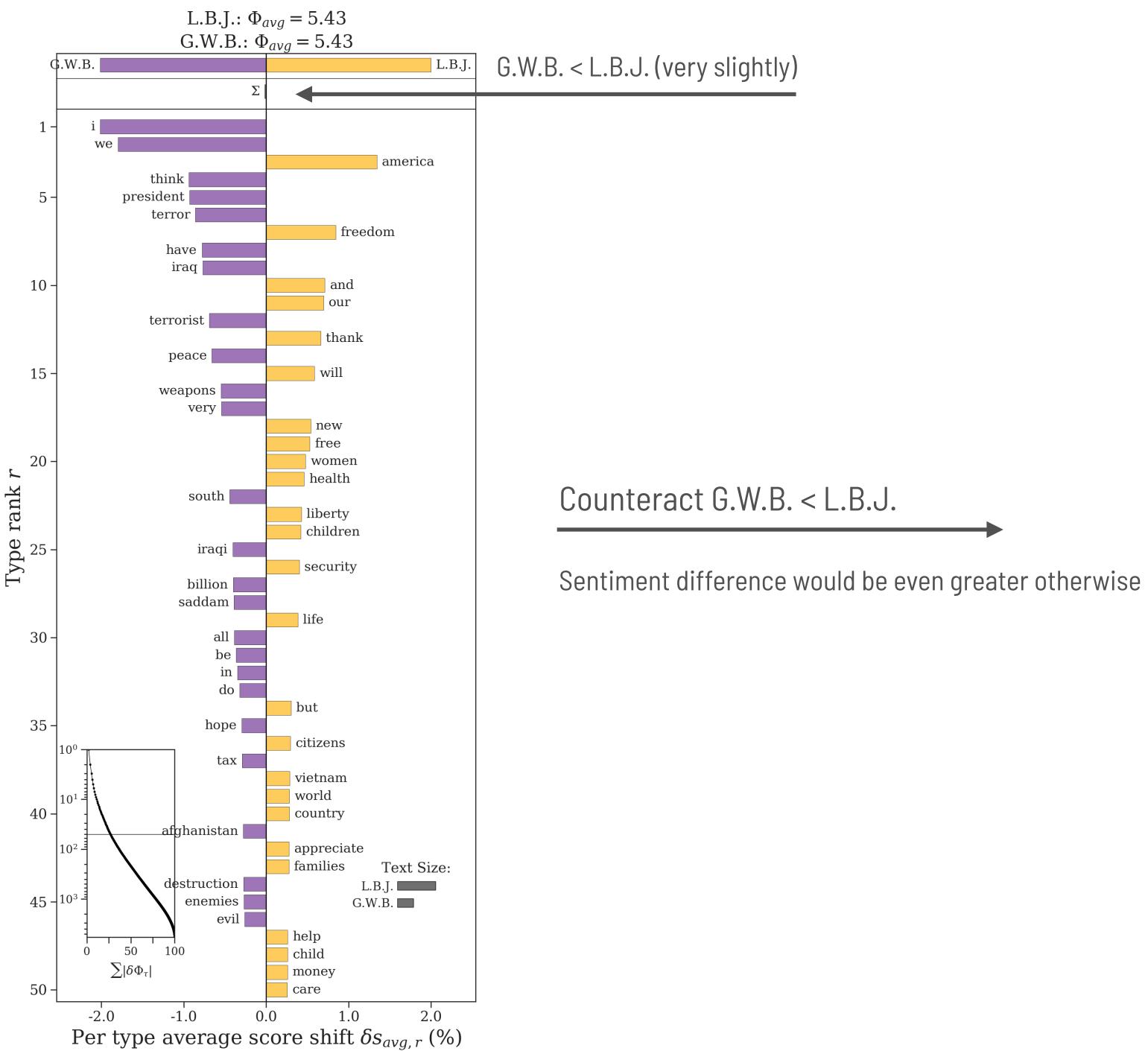


Sentiment Shift

Directly contribute to G.W.B. < L.B.J





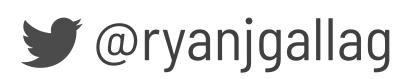


Measure

Advantages

Computational Story Lab, Summer 2020

Drawbacks



Measure	Advantag	
Proportions	Simple, interpretable	

Computational Story Lab, Summer 2020

es

Drawbacks

Emphasizes small differences between common words



Measure	
---------	--

Advanta

Proportions

Simple, interpretable

Shannon entropy

Accounts for how "surprisin

Computational Story Lab, Summer 2020

ages

Drawbacks

Emphasizes small differences between common words

ng″	а	word	is
-----	---	------	----

Surprisal weighting can't always offset common words

Measure	Advanta
Proportions	Simple, interpretable
Shannon entropy	Accounts for how "surprising
Tsallis entropy	Tunability between rare and

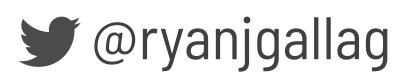
Computational Story Lab, Summer 2020

iges

Drawbacks

Emphasizes small differences between common words

ing" a word is	Surprisal weighting can't always offset common words	
nd common words	Requires ad hoc choice of parameter	



Measure	Advanta	
Proportions	Simple, interpretable	
Shannon entropy	Accounts for how "surprisin	
Tsallis entropy	Tunability between rare and	
Kullback-Leibler divergence	Measures divergence from	

Computational Story Lab, Summer 2020

iges

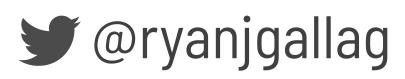
Drawbacks

Emphasizes small differences between common words

ing" a word is	Surprisal weighting can't always offset common words
nd common words	Requires ad hoc choice of parameter
n reference text	Only well-defined when texts have all the same words

Measure Advantages		Drawbacks	
Proportions	Simple, interpretable	Emphasizes small differences between common words	
Shannon entropy	Accounts for how "surprising" a word is	Surprisal weighting can't always offset common words	
Tsallis entropy	Tunability between rare and common words	Requires ad hoc choice of parameter	
Kullback-Leibler divergence	Measures divergence from reference text	Only well-defined when texts have all the same words	
Jensen-Shannon divergence	Effective at drawing out differences across the word distribution	Difficult to interpret word-level contributions	

Measure	Advantages	Drawbacks
Proportions	Simple, interpretable	Emphasizes small differences between common words
Shannon entropy	Accounts for how "surprising" a word is	Surprisal weighting can't always offset common words
Tsallis entropy	Tunability between rare and common words	Requires ad hoc choice of parameter
Kullback-Leibler divergence	Measures divergence from reference text	Only well-defined when texts have all the same words
Jensen-Shannon divergence	Effective at drawing out differences across the word distribution	Difficult to interpret word-level contributions
Dictionary scores	Theoretical concepts can be encoded through user-defined weights	Potential serious concerns about measurement validity



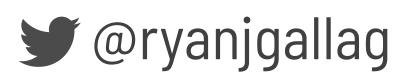
For any measure where we can get individual word contributions, we should always plot a simple word shift plot

For any measure where we can get individual word contributions, we should always plot a simple word shift plot

For any measure that we can write as a weighted average or difference in weighted averages, we can go further

Consider sentiment analysis as an example

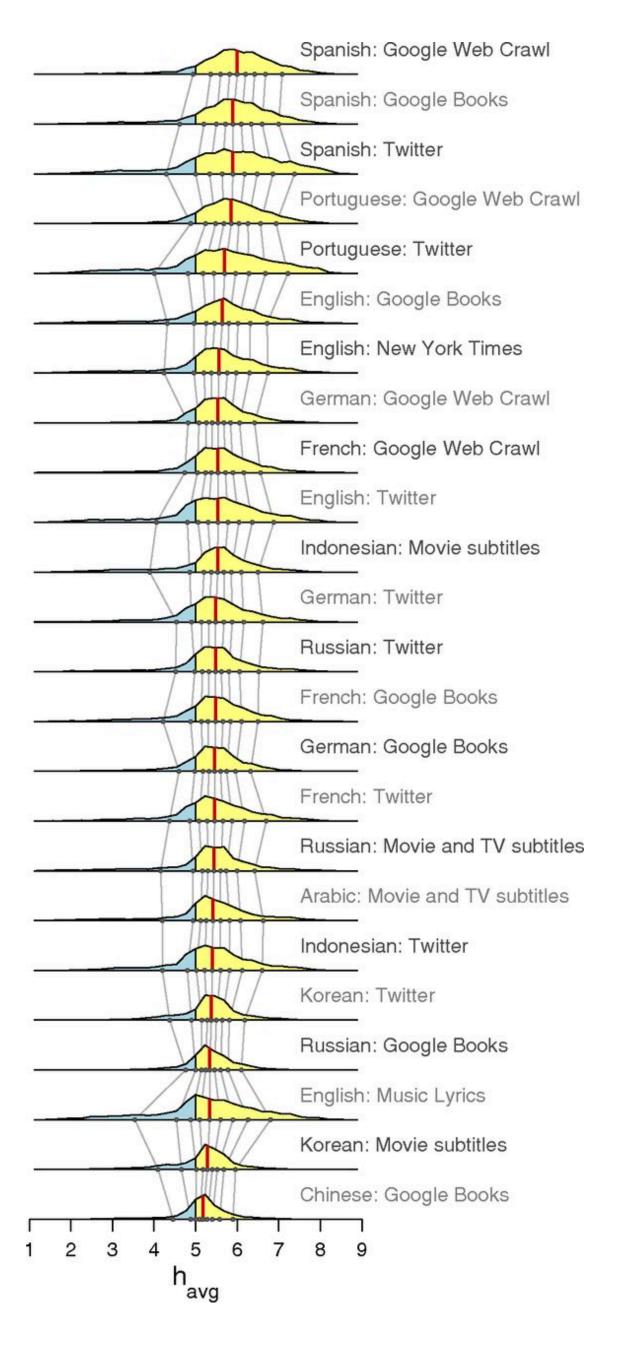
Computational Story Lab, Summer 2020



Consider sentiment analysis as an example

The Story Lab found that there is a universal positivity bias in human language

Computational Story Lab, Summer 2020



🕑 @ryanjgallag

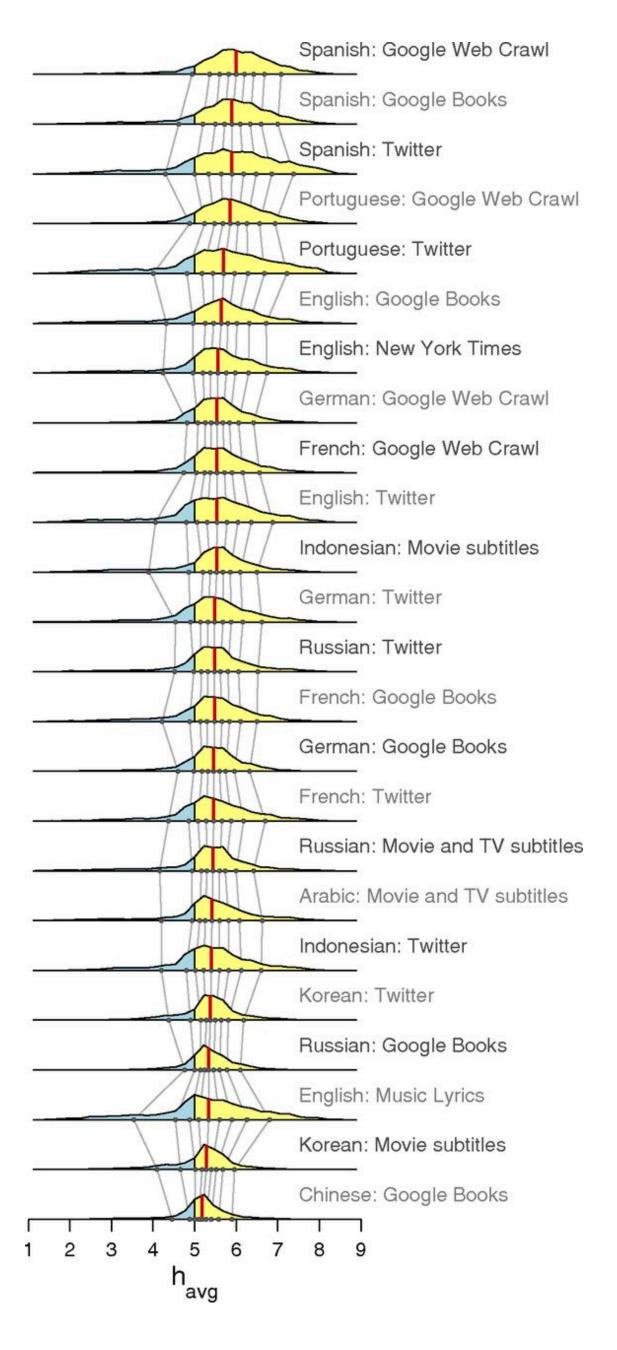
Consider sentiment analysis as an example

The Story Lab found that there is a universal positivity bias in human language

The bias is with respect to a **reference**

Qualitatively, we know that labMT words with scores > 5 are *positive* and those with scores < 5 are negative

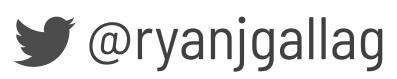
Computational Story Lab, Summer 2020



y @ryanjgallag

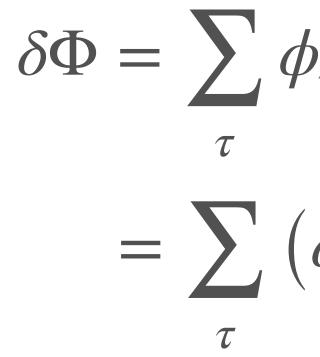
Computational Story Lab, Summer 2020

We can encode qualitatively different regimes of scores in our word shifts by applying a reference score



We can encode qualitatively different regimes of scores in our word shifts by applying a reference score

We can rewrite any difference of weighted averages to incorporate a reference score

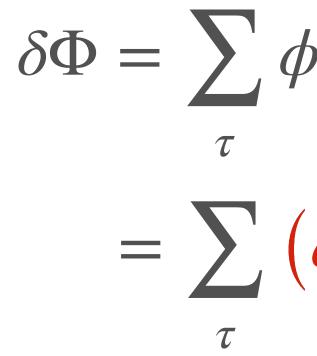


$$b_{\tau} p_{\tau}^{(2)} - \phi_{\tau} p_{\tau}^{(1)}$$

$$\left(\phi_{\tau}-\Phi^{(ref)}\right)\left(p_{\tau}^{(2)}-p_{\tau}^{(1)}\right)$$

We can encode qualitatively different regimes of scores in our word shifts by applying a reference score

We can rewrite any difference of weighted averages to incorporate a reference score



Computational Story Lab, Summer 2020

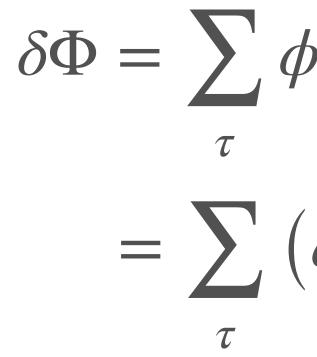
$$b_{\tau} p_{\tau}^{(2)} - \phi_{\tau} p_{\tau}^{(1)}$$

$$(\phi_{\tau} - \Phi^{(ref)}) (p_{\tau}^{(2)} - p_{\tau}^{(1)})$$

word score with respect to reference

We can encode qualitatively different regimes of scores in our word shifts by applying a reference score

We can rewrite any difference of weighted averages to incorporate a reference score



Computational Story Lab, Summer 2020

$$b_{\tau} p_{\tau}^{(2)} - \phi_{\tau} p_{\tau}^{(1)}$$

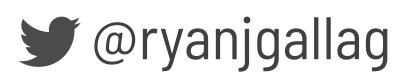
$$\left(\phi_{\tau} - \Phi^{(ref)} \right) \left(p_{\tau}^{(2)} - p_{\tau}^{(1)} \right)$$

difference in frequency

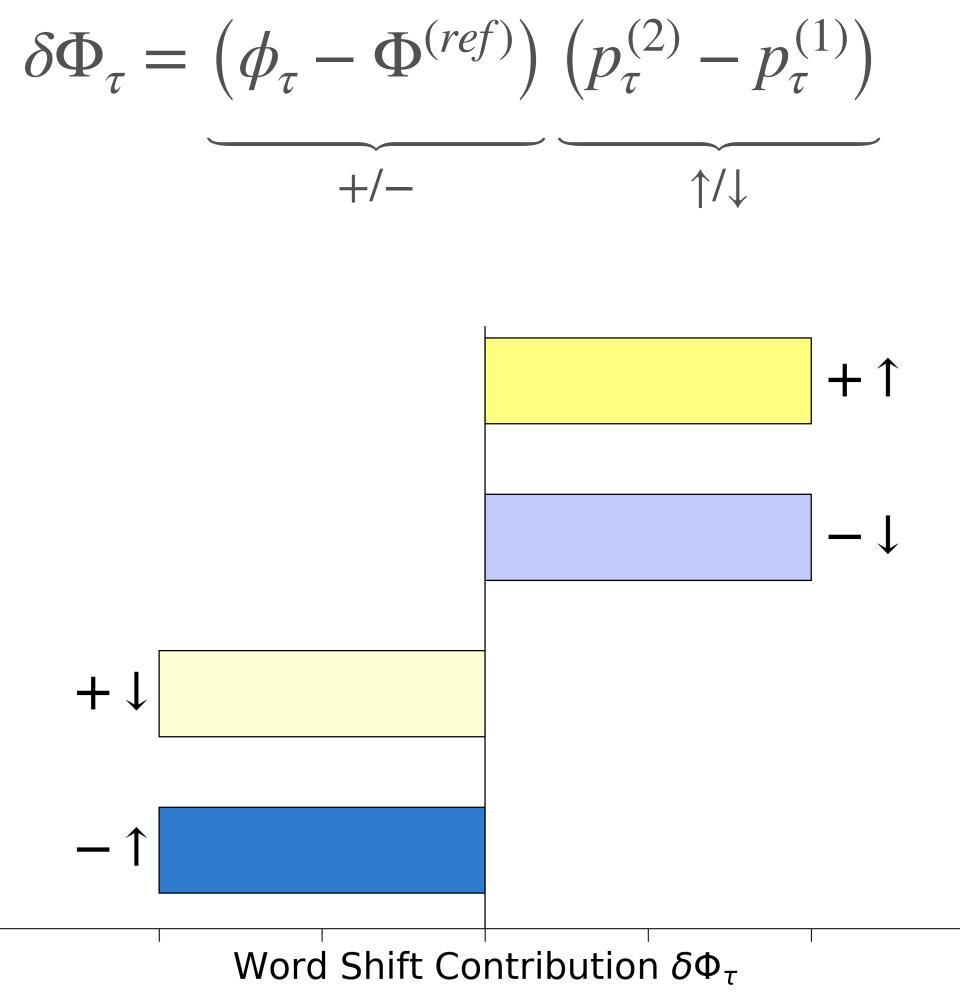


Word Contributions

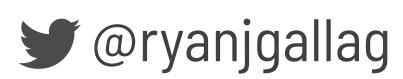
 $\delta \Phi_{\tau} = \left(\phi_{\tau} - \Phi^{(ref)}\right) \left(p_{\tau}^{(2)} - p_{\tau}^{(1)}\right)$ +/- \uparrow/\downarrow



Word Contributions

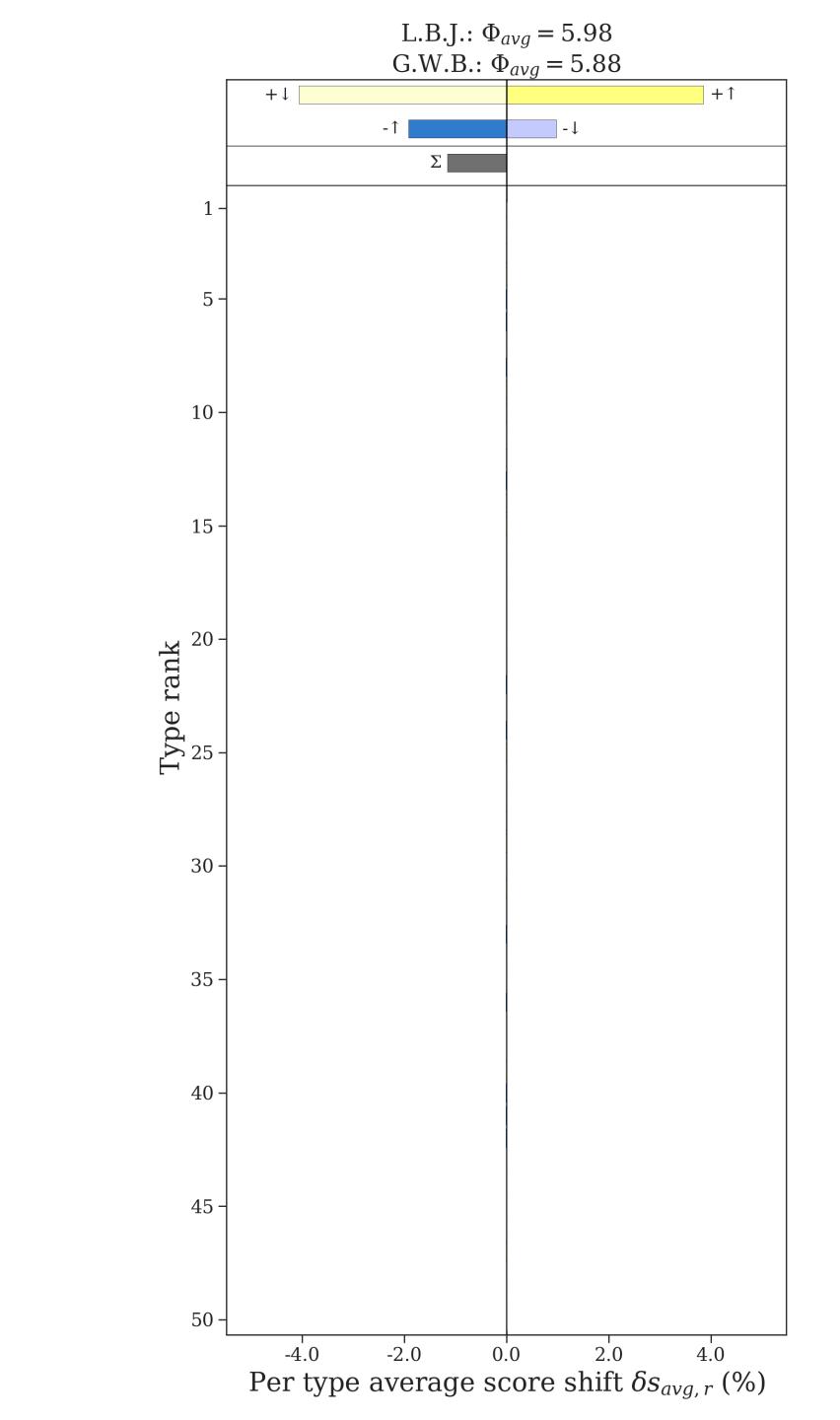


Computational Story Lab, Summer 2020



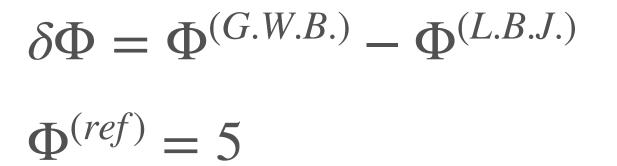
Sentiment Shift

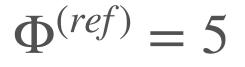
 $\delta \Phi = \Phi^{(G.W.B.)} - \Phi^{(L.B.J.)}$ $\Phi^{(ref)} = 5$



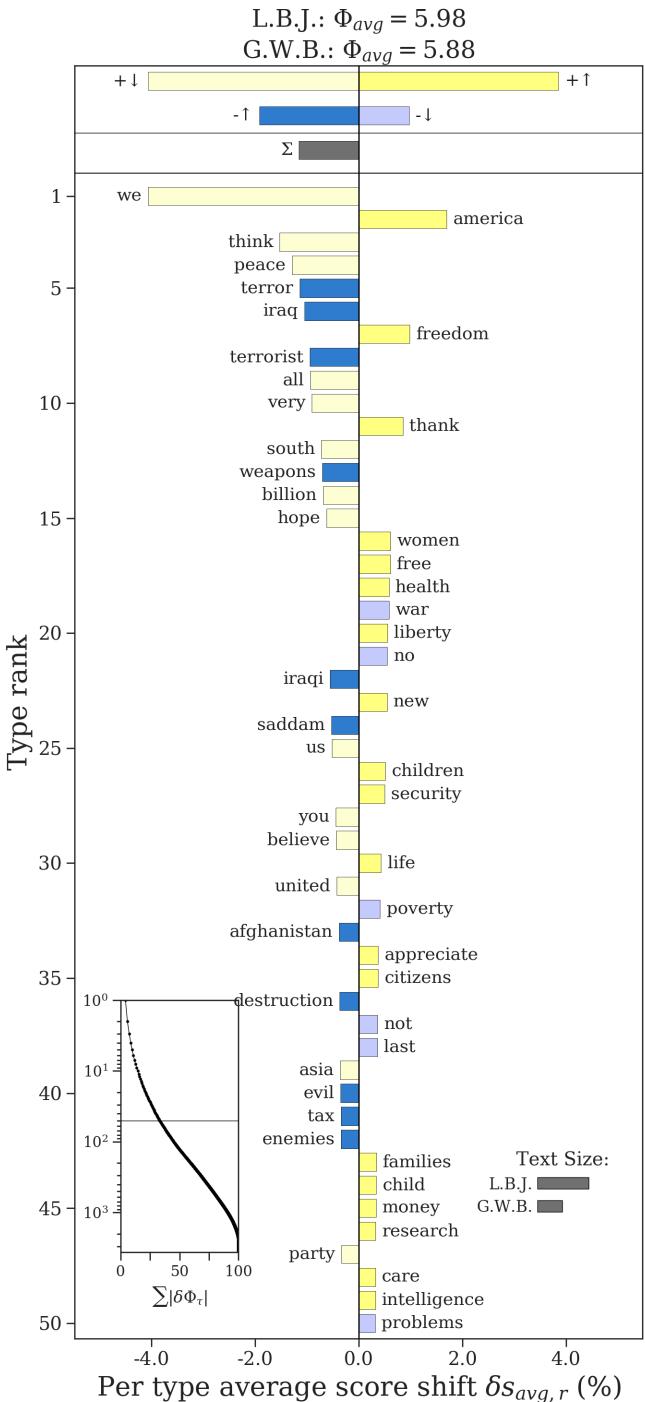
- + ↑ Relatively positive word used more often
- $-\downarrow$ Relatively negative word used less often
- $+\downarrow$ Relatively positive word used less often
- $-\uparrow$ Relatively negative word used more often

Sentiment Shift





Directly contribute to G.W.B. < L.B.J



- Relatively positive word used more often + 1
- Relatively negative word used less often $-\downarrow$
- Relatively positive word used less often $+\downarrow$
- Relatively negative word used more often ____

Counteract G.W.B. < L.B.J.

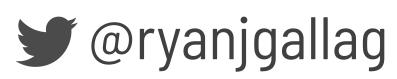
Sentiment difference would be even greater otherwise

Before, we assumed that a word's score is the same across both texts

This limits our ability to use the full word shift framework for any of the entropy-based measures, or for dictionary-based analyses using domain-adapted dictionaries

We can generalize word shifts to account for changes in scores

 $\delta \Phi = \sum \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)}$ \mathcal{T}



We can generalize word shifts to account for changes in scores

$$\begin{split} \delta \Phi &= \sum_{\tau} \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)} \\ &= \sum_{\tau} \left[\frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)} \right) - \Phi^{(ref)} \right] \left(p_{\tau}^{(1)} \right) \end{split}$$

 $p_{\tau}^{(2)} - p_{\tau}^{(1)} + \frac{1}{2} \left(p_{\tau}^{(1)} + p_{\tau}^{(2)} \right) \left(\phi_{\tau}^{(2)} - \phi_{\tau}^{(1)} \right)$

We can generalize word shifts to account for changes in scores

 $\delta \Phi = \sum \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)}$ $= \sum \left| \frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)} \right) - \Phi^{(ref)} \right| \left(p_{\tau}^{(2)} - p_{\tau}^{(1)} \right) + \frac{1}{2} \left(p_{\tau}^{(1)} + p_{\tau}^{(2)} \right) \left(\phi_{\tau}^{(2)} - \phi_{\tau}^{(1)} \right) \right|$

average score

Computational Story Lab, Summer 2020

We can generalize word shifts to account for changes in scores

$$\begin{split} \delta \Phi &= \sum_{\tau} \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)} \\ &= \sum_{\tau} \left[\frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)} \right) - \Phi^{(ref)} \right] \left(p_{\tau}^{(1)} \right) \end{split}$$

difference between average score and reference

 $p_{\tau}^{(2)} - p_{\tau}^{(1)} \right) + \frac{1}{2} \left(p_{\tau}^{(1)} + p_{\tau}^{(2)} \right) \left(\phi_{\tau}^{(2)} - \phi_{\tau}^{(1)} \right)$

We can generalize word shifts to account for changes in scores

 $\delta \Phi = \sum \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)}$ $= \sum \left| \frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)} \right) - \Phi^{(ref)} \right| \left(p_{\tau}^{(2)} - p_{\tau}^{(1)} \right) + \frac{1}{2} \left(p_{\tau}^{(1)} + p_{\tau}^{(2)} \right) \left(\phi_{\tau}^{(2)} - \phi_{\tau}^{(1)} \right) \right|$

Computational Story Lab, Summer 2020

difference in frequency

We can generalize word shifts to account for changes in scores

$$\begin{split} \delta \Phi &= \sum_{\tau} \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)} \\ &= \sum_{\tau} \left[\frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)} \right) - \Phi^{(ref)} \right] \left(p_{\tau}^{(1)} \right) \end{split}$$

Computational Story Lab, Summer 2020

 $p_{\tau}^{(2)} - p_{\tau}^{(1)} + \frac{1}{2} \left(p_{\tau}^{(1)} + p_{\tau}^{(2)} \right) \left(\phi_{\tau}^{(2)} - \phi_{\tau}^{(1)} \right)$

average frequency

We can generalize word shifts to account for changes in scores

$$\begin{split} \delta \Phi &= \sum_{\tau} \phi_{\tau}^{(2)} p_{\tau}^{(2)} - \phi_{\tau}^{(1)} p_{\tau}^{(1)} \\ &= \sum_{\tau} \left[\frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)} \right) - \Phi^{(ref)} \right] \left(p_{\tau}^{(1)} \right) \end{split}$$

Computational Story Lab, Summer 2020

 $p_{\tau}^{(2)} - p_{\tau}^{(1)} + \frac{1}{2} \left(p_{\tau}^{(1)} + p_{\tau}^{(2)} \right) \left(\phi_{\tau}^{(2)} - \phi_{\tau}^{(1)} \right)$

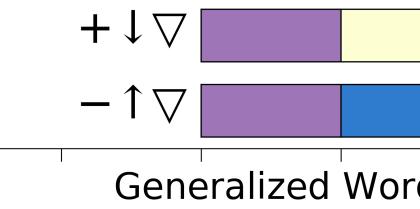
difference in scores

Word Contributions

$$\delta \Phi_{\tau} = \underbrace{\left[\frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)}\right) - \Phi^{(ref)}\right]}_{+/-} \underbrace{\left(p_{\tau}^{(2)} - p_{\tau}^{(1)}\right)}_{\uparrow/\downarrow} + \underbrace{\frac{1}{2} \left(p_{\tau}^{(1)} + p_{\tau}^{(2)}\right) \left(\phi_{\tau}^{(2)} - \phi_{\tau}^{(1)}\right)}_{\nabla/\bigtriangleup}$$

Word Contributions

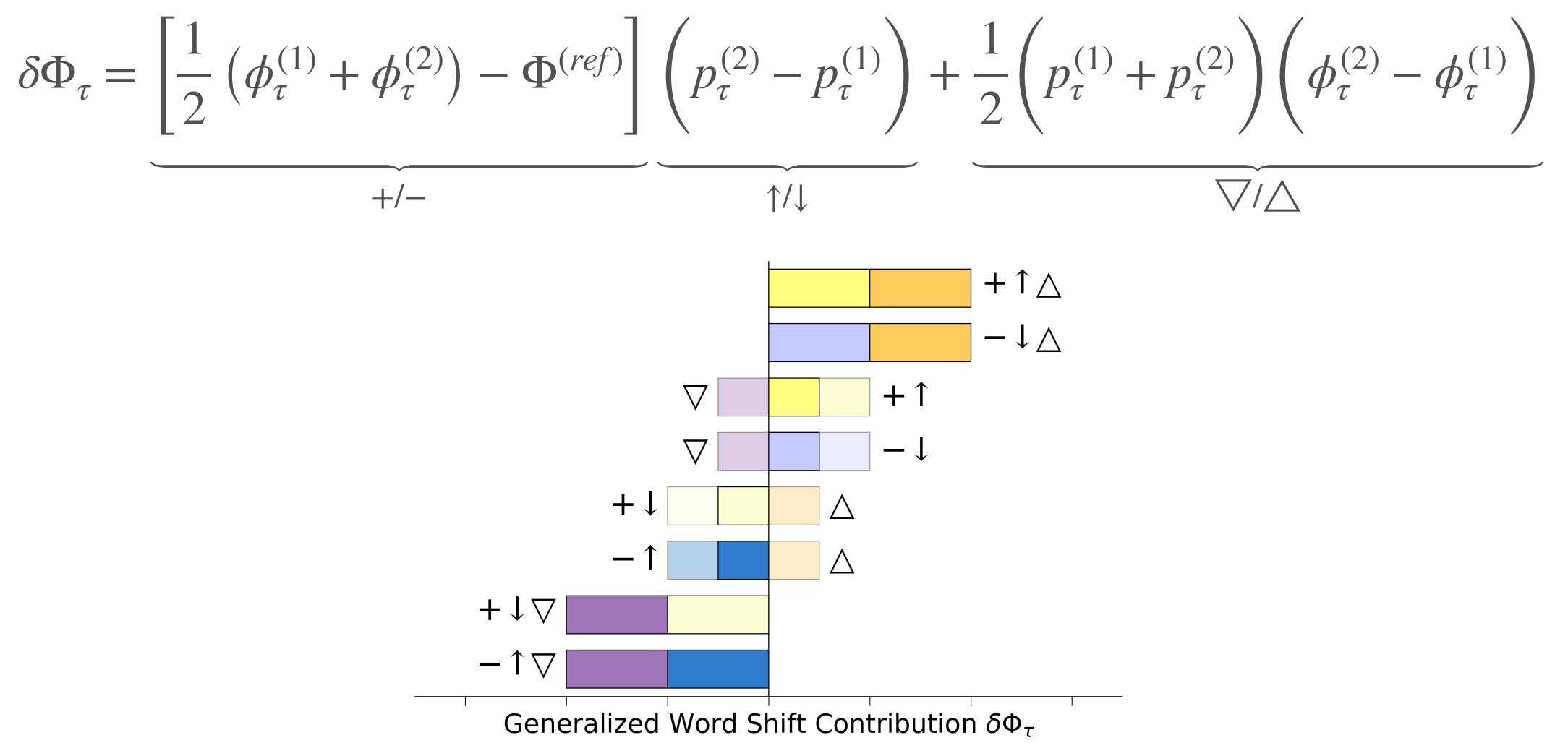
 $\delta \Phi_{\tau} = \left| \frac{1}{2} \left(\phi_{\tau}^{(1)} + \phi_{\tau}^{(2)} \right) - \Phi^{(ref)} \right| \left(p_{\tau}^{(2)} \right)$ +/-

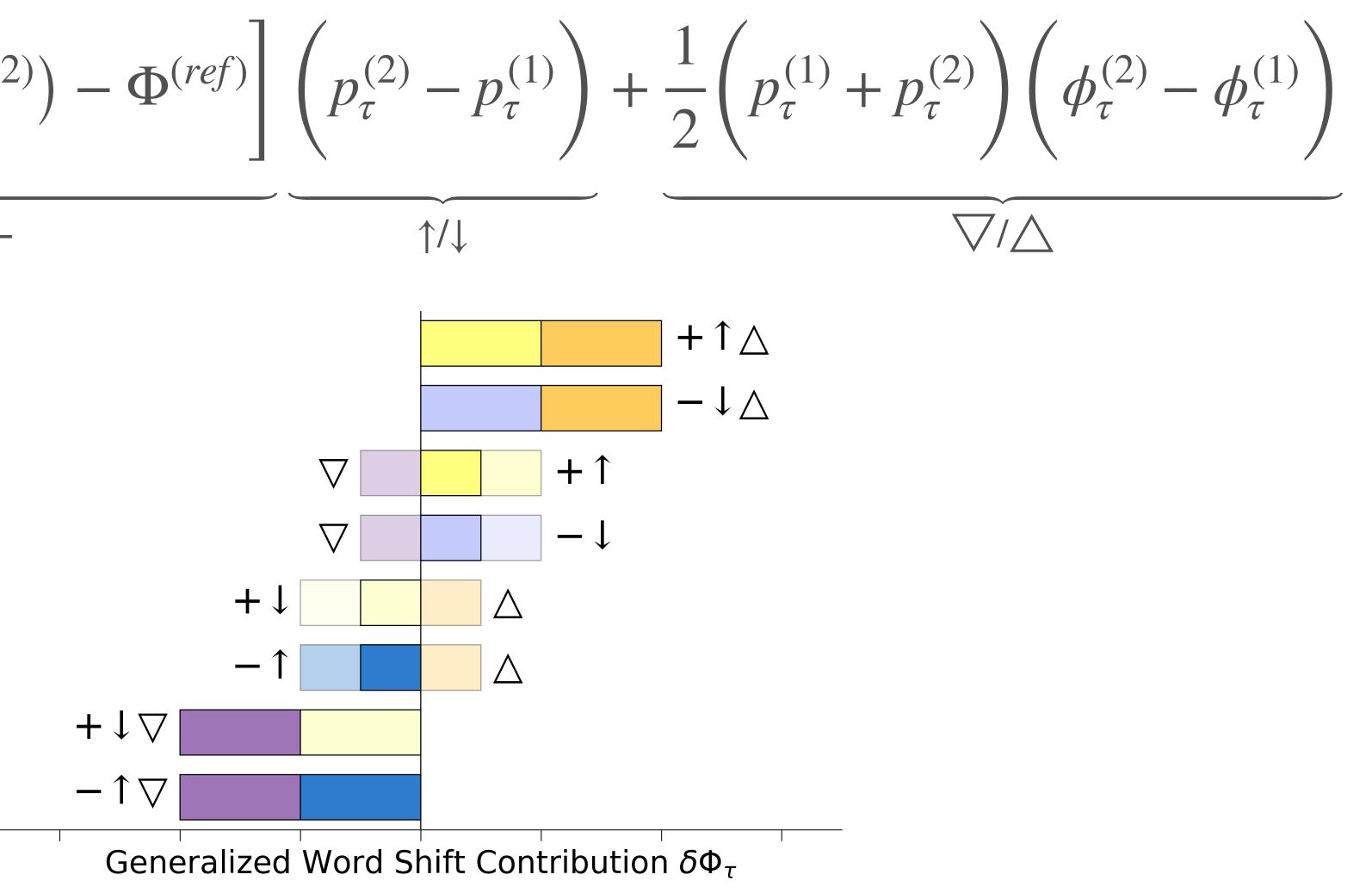


Computational Story Lab, Summer 2020



Word Contributions





Computational Story Lab, Summer 2020

Sentiment Shift

$$\delta \Phi = \Phi^{(G.W.B.)} - \Phi^{(L.B.J.)}$$

 $\Phi^{(ref)} = 5$

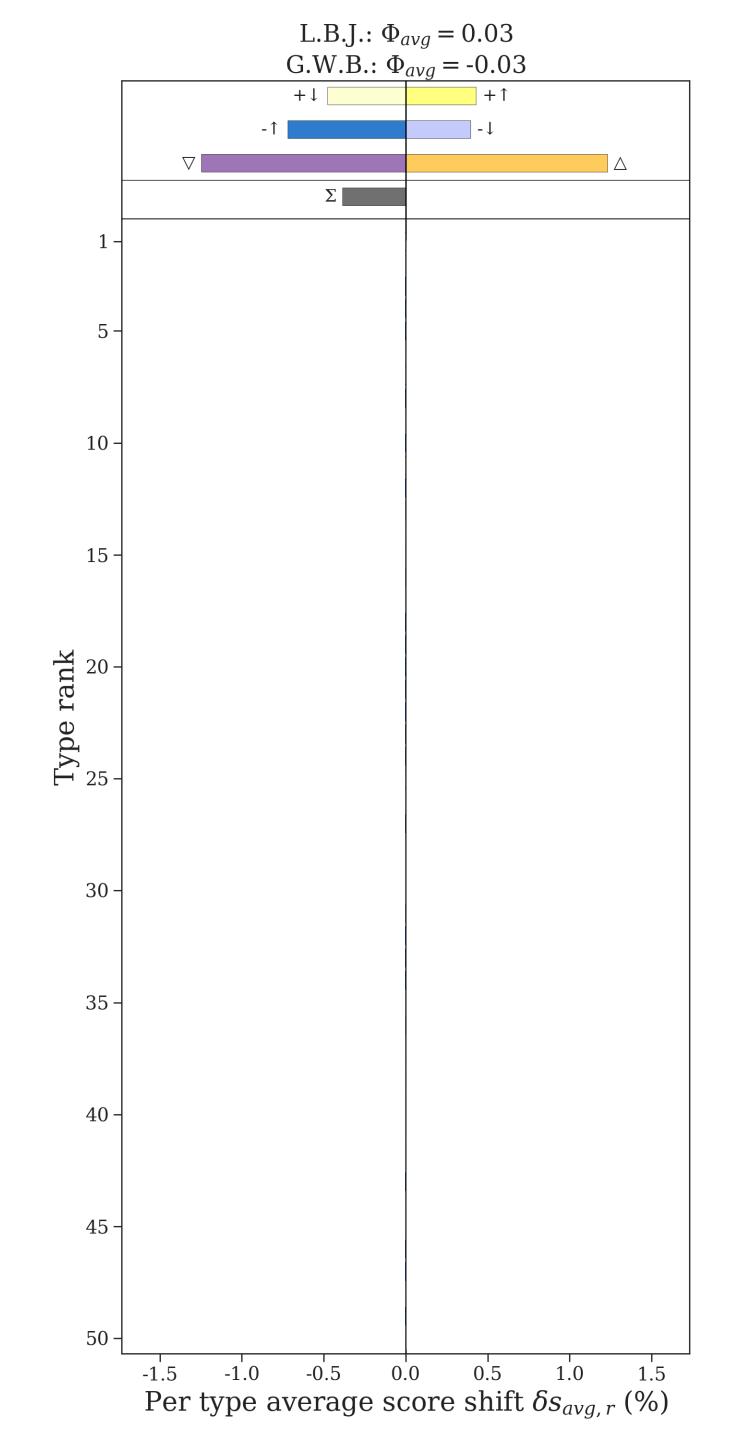
Using domain-adapted dictionaries for the 1960s and 2000s

Sentiment Shift

$$\delta \Phi = \Phi^{(G.W.B.)} - \Phi^{(L.B.J.)}$$

$$\Phi^{(ref)} = 5$$

Using domain-adapted dictionaries for the 1960s and 2000s



- + ↑ Relatively positive word used more often
- $-\downarrow$ Relatively negative word used less often
- $+\downarrow$ Relatively positive word used less often
- $-\uparrow$ Relatively negative word used more often
 - \sum Higher word positivity than before
 - Lower word positivity than before

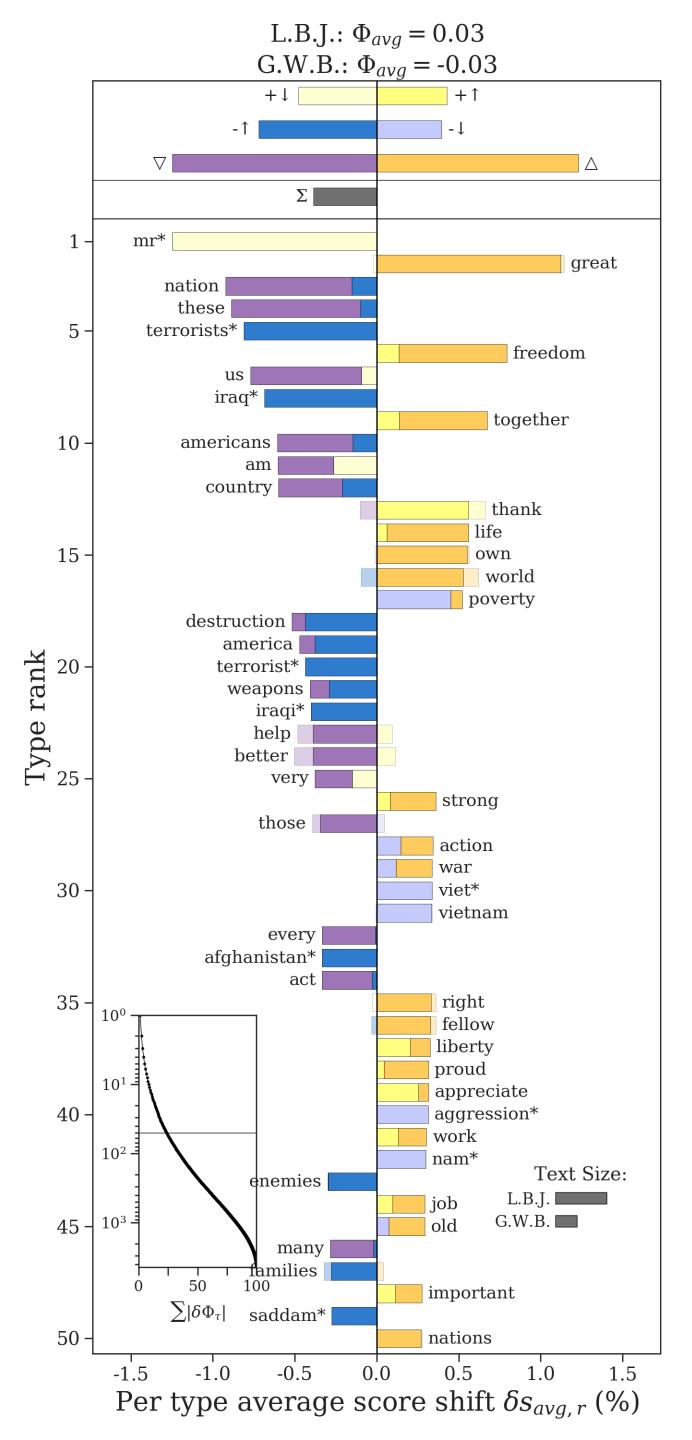
Sentiment Shift

$$\delta \Phi = \Phi^{(G.W.B.)} - \Phi^{(L.B.J.)}$$

$$\Phi^{(ref)} = 5$$

Using domain-adapted dictionaries for the 1960s and 2000s





- Relatively positive word used more often +1
- Relatively negative word used less often $-\downarrow$
- Relatively positive word used less often $+\downarrow$
- Relatively negative word used more often ____
 - Higher word positivity than before
 - Lower word positivity than before

Counteract G.W.B. < L.B.J.

Sentiment difference would be even greater otherwise

Comparison Measures as Weighted Averages

Measure

Proportions

Shannon entropy

Tsallis entropy

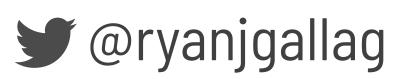
Kullback-Leibler divergence

Jensen-Shannon divergence

Generalized JSD

Computational Story Lab, Summer 2020

Word Contribution $\delta \Phi_{\tau}$



Comparison Measures as Weighted Averages

Measure		
Proportions		$p_{\tau}^{(2)} - p_{\tau}^{(2)}$
Shannon en	tropy	$-p_{\tau}^{(2)} \log$
Tsallis entro	ру	$-p_{\tau}^{(2)}\left[\frac{\left(p_{\tau}^{(2)}\right)^{\alpha}}{\alpha-1}\right]$
Kullback-Le	ibler divergence	$-p_{\tau}^{(2)} \log$
Jensen-Sha	nnon divergence	$p_{\tau}^{(2)}\pi_{2}($
Generalized	JSD	$-p_{\tau}^{(2)}\pi_{2}\left[\frac{(p_{\tau}^{(2)})}{2}\right]$

Computational Story Lab, Summer 2020

Word Contribution $\delta \Phi_{\tau}$

 $\mathcal{D}_{\tau}^{(1)}$

 $\log p_{\tau}^{(2)} + p_{\tau}^{(1)} \log p_{\tau}^{(1)}$

$$\frac{1}{1} + p_{\tau}^{(1)} \left[\frac{\left(p_{\tau}^{(1)} \right)^{\alpha - 1}}{\alpha - 1} \right]$$

$$g p_{\tau}^{(1)} + p_{\tau}^{(1)} \log p_{\tau}^{(1)}$$

$$\log p_{\tau}^{(2)} - \log m_{\tau} - p_{\tau}^{(1)} \pi_1 \left(\log m_{\tau} - \log p_{\tau}^{(1)}\right)$$

$$\frac{(p)^{\alpha-1} - m_{\tau}^{\alpha-1}}{\alpha - 1} - p_{\tau}^{(1)} \pi_1 \left[\frac{m_{\tau}^{\alpha-1} - (p_{\tau}^{(1)})^{\alpha-1}}{\alpha - 1} \right]$$

y @ryanjgallag

Comparison Measures as Weighted Averages

Measure	
Proportions	$p_{\tau}^{(2)} - p_{\tau}^{(2)}$
Shannon entropy	$-p_{ au}^{(2)}\log$
Tsallis entropy	$-p_{\tau}^{(2)}\left[\frac{\left(p_{\tau}^{(2)}\right)^{\alpha}}{\alpha-1}\right]$
Kullback-Leibler divergence	$-p_{ au}^{(2)}\log$
Jensen-Shannon divergence	$p_{\tau}^{(2)}\pi_{2}(1)$
Generalized JSD	$-p_{\tau}^{(2)}\pi_{2}\left[\frac{(p_{\tau}^{(2)})}{2} \right]$

Computational Story Lab, Summer 2020

Word Contribution $\delta \Phi_{\tau}$

 $p_{\tau}^{(1)}$

 $\log p_{\tau}^{(2)} + p_{\tau}^{(1)} \log p_{\tau}^{(1)}$

$$\frac{1}{1} + p_{\tau}^{(1)} \left[\frac{\left(p_{\tau}^{(1)} \right)^{\alpha - 1}}{\alpha - 1} \right]$$

$$p_{\tau}^{(1)} + p_{\tau}^{(2)} \log p_{\tau}^{(2)}$$

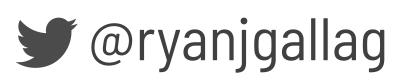
$$\log p_{\tau}^{(2)} - \log m_{\tau} - p_{\tau}^{(1)} \pi_1 \left(\log m_{\tau} - \log p_{\tau}^{(1)}\right)$$

$$\frac{p_{\tau}^{\alpha-1} - m_{\tau}^{\alpha-1}}{\alpha - 1} - p_{\tau}^{(1)} \pi_{1} \left[\frac{m_{\tau}^{\alpha-1} - (p_{\tau}^{(1)})^{\alpha-1}}{\alpha - 1} \right]$$

@ryanjgallag

Computational Story Lab, Summer 2020

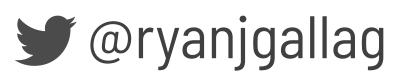
In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)



In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)

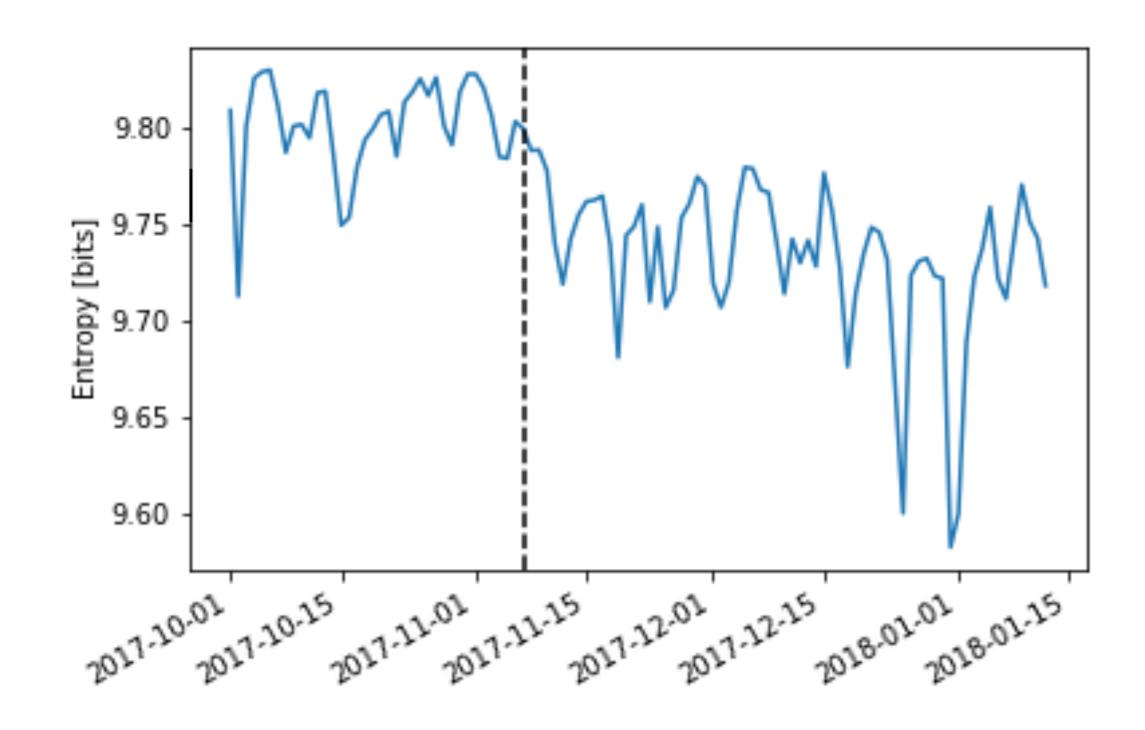
Question: How did that change the information content of tweets?

Computational Story Lab, Summer 2020



In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)

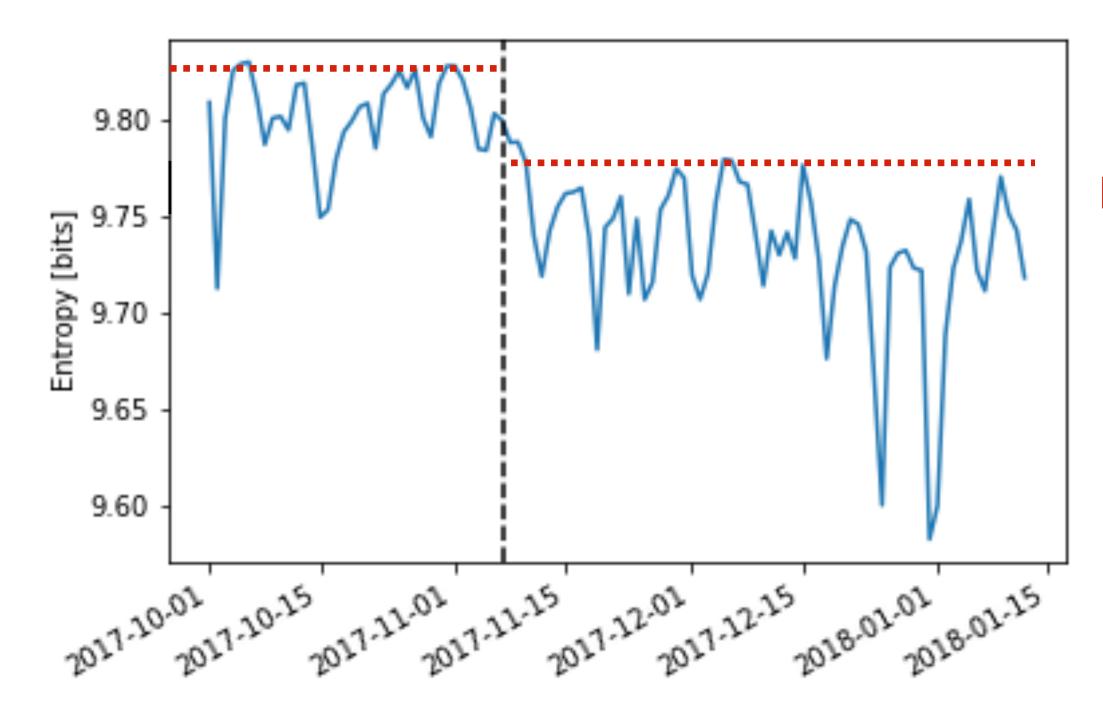
Question: How did that change the information content of tweets?



Computational Story Lab, Summer 2020

In early November 2017, Twitter began rolling out a new 280 character limit for tweets (up from 140 characters)

Question: How did that change the information content of tweets?



Computational Story Lab, Summer 2020

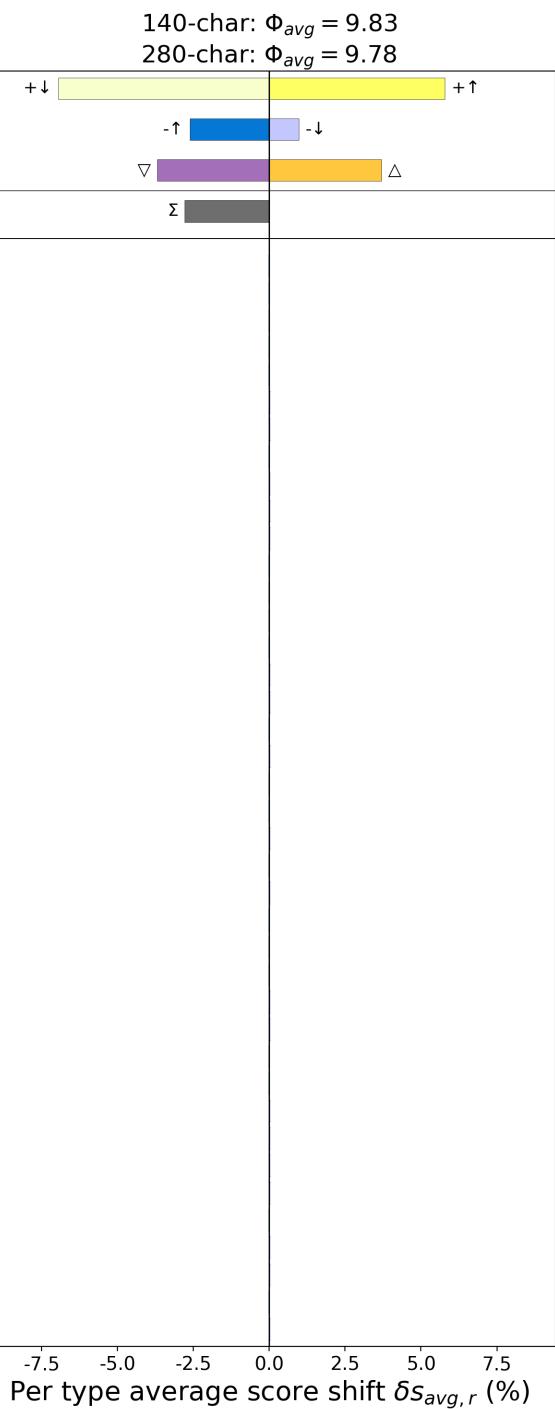
Entropy over entire before and after periods



Twitter Entropy Shift

$$\delta H = H^{(280)} - H^{(140)}$$
$$\Phi^{(ref)} = H^{(140)}$$

Twitter Entropy Shift +↓ ∇ 1 $\delta H = H^{(280)} - H^{(140)}$ $\Phi^{(ref)} = H^{(140)}$ 5 10 Type rank *r*¹² 25 30 35 40



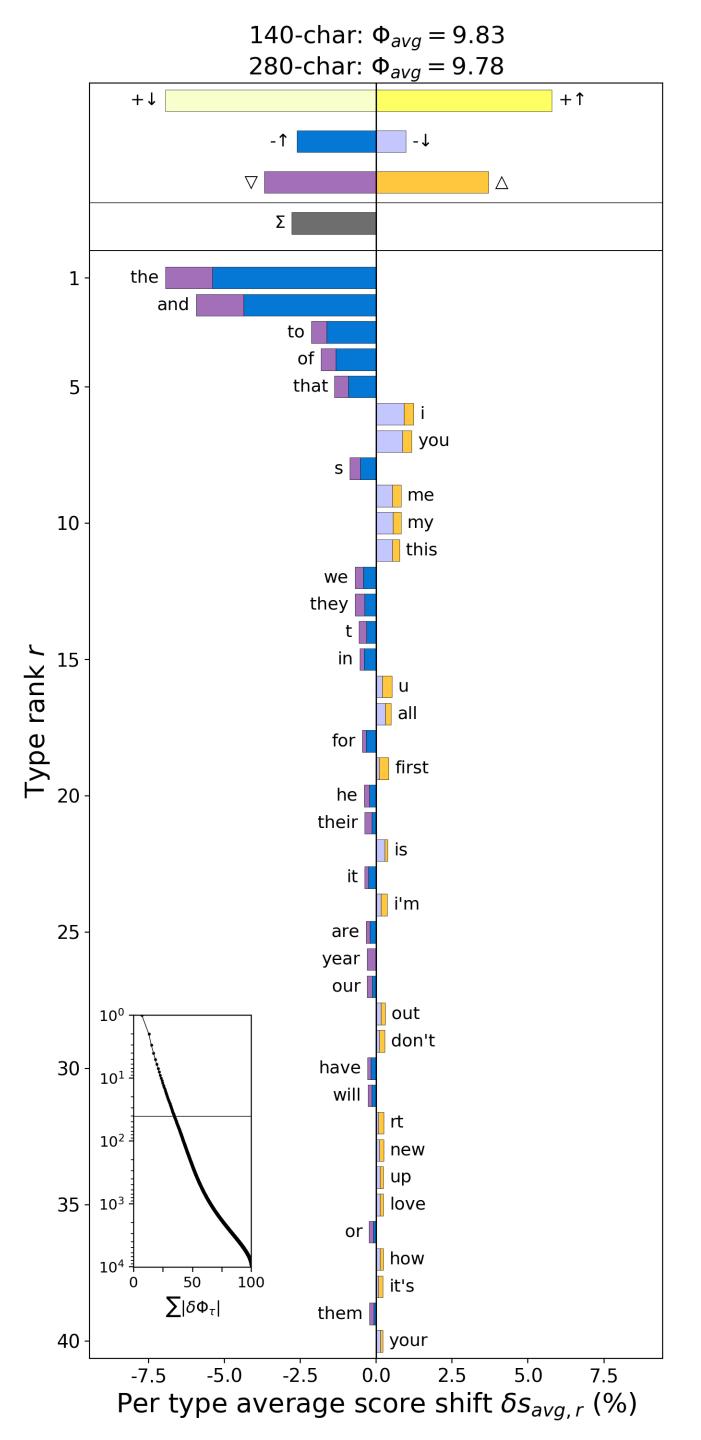
- + ↑ Relatively surprising word used more often
- $-\downarrow$ Relatively unsurprising word used less often
- + \downarrow Relatively surprising word used less often
- $-\uparrow$ Relatively unsurprising word used more often
 - \sum Higher surprisal than before

Lower surprisal than before

Twitter Entropy Shift

$$\delta H = H^{(280)} - H^{(140)}$$
$$\Phi^{(ref)} = H^{(140)}$$

Directly contribute to H(280) < H(140)



- Relatively surprising word used more often +1
- Relatively unsurprising word used less often $-\downarrow$
- Relatively surprising word used less often $+\downarrow$
- Relatively unsurprising word used more often
- Higher surprisal than before
- Lower surprisal than before

Counteract H(280) < H(140)

Entropy difference would be even greater otherwise

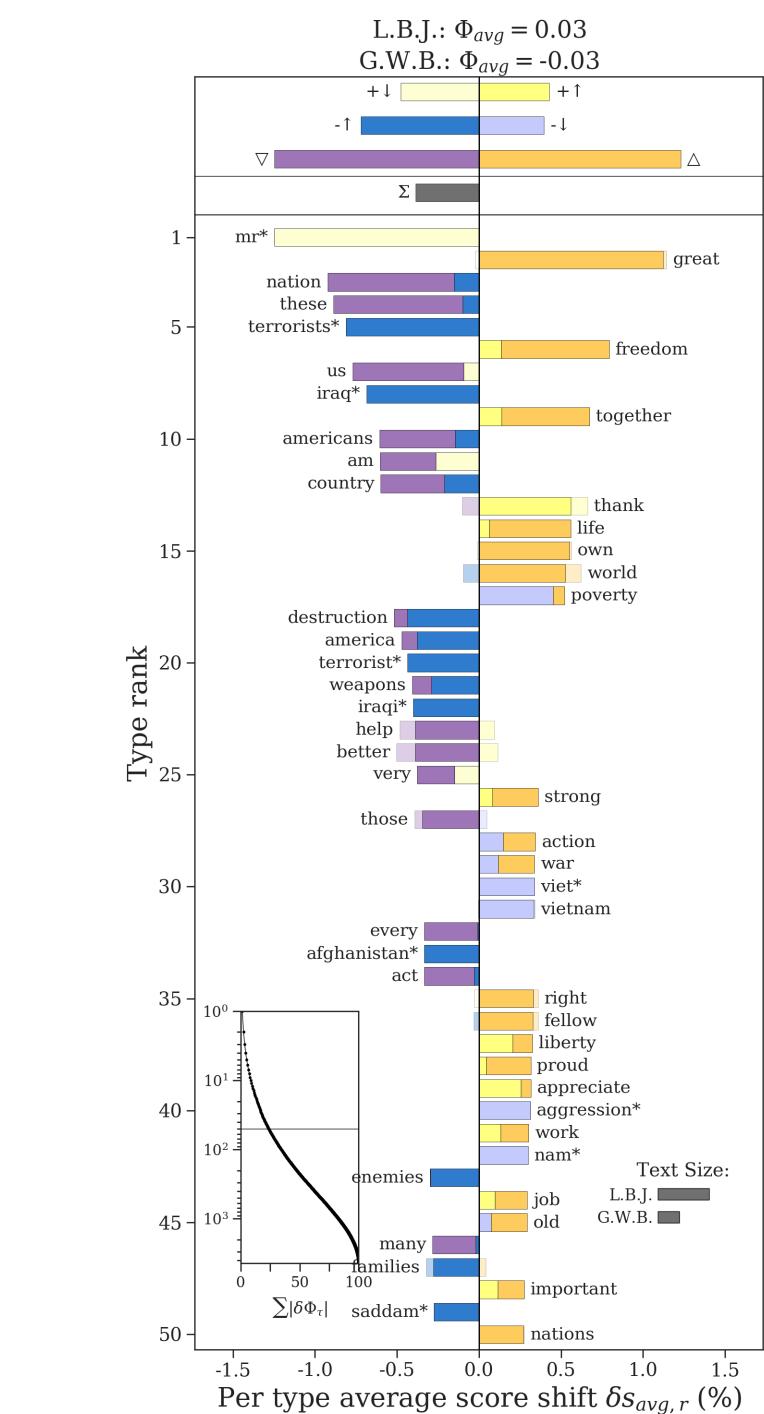
- Look at the words!
- 2. We can visualize any measure where individual word contributions can be extracted
- 3. We can use a detailed word shift decomposition to visualize any weighted average
- Many common measures can be reformulated as 4. weighted averages

All visualizations were made using the Shifterator Python package

https://github.com/ryanjgallagher/shifterator

pip install shifterator

Computational Story Lab, Summer 2020

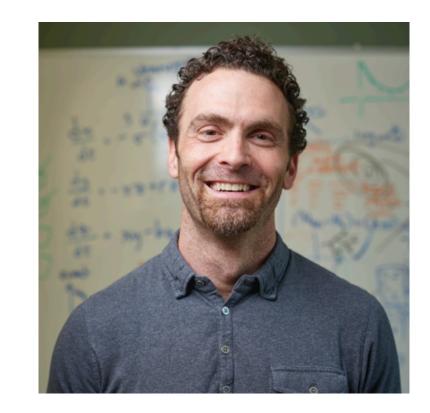


Collaborators

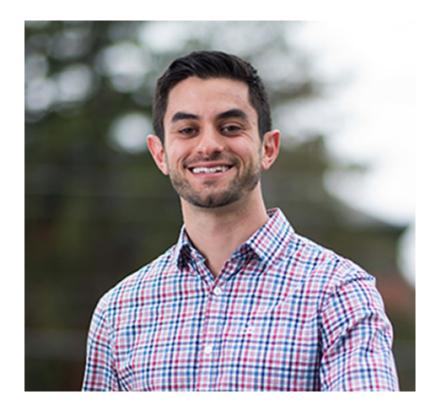
Morgan Frank MIT

Colin Van Oort University of Vermont

Andy Reagan MassMutual



Chris Danforth University of Vermont



Lewis Mitchell University of Adelaide

Aaron Schwartz University of Vermont

Peter Dodds University of Vermont

Thank you for your time!

Ryan J. Gallagher 🕑 @ryanjgallag ryanjgallag@gmail.com

